Notes on Hamiltonian dynamical systems:
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows stude...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | London Mathematical Society student texts
102 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 UBM01 URL des Erstveröffentlichers |
Zusammenfassung: | Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students |
Beschreibung: | Title from publisher's bibliographic system (viewed on 07 Apr 2022) |
Beschreibung: | 1 Online-Ressource (xix, 451 Seiten) |
ISBN: | 9781009151122 |
DOI: | 10.1017/9781009151122 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048240558 | ||
003 | DE-604 | ||
005 | 20230821 | ||
007 | cr|uuu---uuuuu | ||
008 | 220524s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009151122 |c Online |9 978-1-00-915112-2 | ||
024 | 7 | |a 10.1017/9781009151122 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009151122 | ||
035 | |a (OCoLC)1322804313 | ||
035 | |a (DE-599)BVBBV048240558 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-19 | ||
082 | 0 | |a 515/.39 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
100 | 1 | |a Giorgilli, Antonio |d 1949- |0 (DE-588)1258279614 |4 aut | |
245 | 1 | 0 | |a Notes on Hamiltonian dynamical systems |c Antonio Giorgilli, University of Milan |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xix, 451 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society student texts | |
490 | 0 | |a 102 | |
500 | |a Title from publisher's bibliographic system (viewed on 07 Apr 2022) | ||
520 | |a Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students | ||
650 | 4 | |a Hamiltonian systems | |
650 | 0 | 7 | |a Systemanalyse |0 (DE-588)4116673-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 2 | |a Systemanalyse |0 (DE-588)4116673-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-915114-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009151122 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033621060 | ||
966 | e | |u https://doi.org/10.1017/9781009151122 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009151122 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009151122 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009151122 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184029966106624 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Giorgilli, Antonio 1949- |
author_GND | (DE-588)1258279614 |
author_facet | Giorgilli, Antonio 1949- |
author_role | aut |
author_sort | Giorgilli, Antonio 1949- |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV048240558 |
classification_rvk | SK 810 SK 950 UF 1000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009151122 (OCoLC)1322804313 (DE-599)BVBBV048240558 |
dewey-full | 515/.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.39 |
dewey-search | 515/.39 |
dewey-sort | 3515 239 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1017/9781009151122 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03335nmm a2200553zc 4500</leader><controlfield tag="001">BV048240558</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230821 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220524s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009151122</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-915112-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009151122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009151122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1322804313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048240558</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.39</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giorgilli, Antonio</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)1258279614</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notes on Hamiltonian dynamical systems</subfield><subfield code="c">Antonio Giorgilli, University of Milan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 451 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">102</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 07 Apr 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-915114-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009151122</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033621060</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009151122</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009151122</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009151122</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009151122</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048240558 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:54:04Z |
indexdate | 2024-07-10T09:32:51Z |
institution | BVB |
isbn | 9781009151122 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033621060 |
oclc_num | 1322804313 |
open_access_boolean | |
owner | DE-12 DE-92 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xix, 451 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts 102 |
spelling | Giorgilli, Antonio 1949- (DE-588)1258279614 aut Notes on Hamiltonian dynamical systems Antonio Giorgilli, University of Milan Cambridge Cambridge University Press 2022 1 Online-Ressource (xix, 451 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society student texts 102 Title from publisher's bibliographic system (viewed on 07 Apr 2022) Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students Hamiltonian systems Systemanalyse (DE-588)4116673-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Dynamisches System (DE-588)4013396-5 s Systemanalyse (DE-588)4116673-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-00-915114-6 https://doi.org/10.1017/9781009151122 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Giorgilli, Antonio 1949- Notes on Hamiltonian dynamical systems Hamiltonian systems Systemanalyse (DE-588)4116673-5 gnd Dynamisches System (DE-588)4013396-5 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4116673-5 (DE-588)4013396-5 (DE-588)4139943-2 |
title | Notes on Hamiltonian dynamical systems |
title_auth | Notes on Hamiltonian dynamical systems |
title_exact_search | Notes on Hamiltonian dynamical systems |
title_exact_search_txtP | Notes on Hamiltonian dynamical systems |
title_full | Notes on Hamiltonian dynamical systems Antonio Giorgilli, University of Milan |
title_fullStr | Notes on Hamiltonian dynamical systems Antonio Giorgilli, University of Milan |
title_full_unstemmed | Notes on Hamiltonian dynamical systems Antonio Giorgilli, University of Milan |
title_short | Notes on Hamiltonian dynamical systems |
title_sort | notes on hamiltonian dynamical systems |
topic | Hamiltonian systems Systemanalyse (DE-588)4116673-5 gnd Dynamisches System (DE-588)4013396-5 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Hamiltonian systems Systemanalyse Dynamisches System Hamiltonsches System |
url | https://doi.org/10.1017/9781009151122 |
work_keys_str_mv | AT giorgilliantonio notesonhamiltoniandynamicalsystems |