Symmetry in graphs:

Introduction and constructions -- The petersen graph, blocks, and actions of A -- Some motivating problems -- Graphs with imprimitive automorphism group -- The end of the beginning -- Other classes of graphs -- The Cayley isomorphism problem -- Automorphism groups of vertex-transitive graphs -- Clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dobson, Ted 1965- (VerfasserIn), Malnič, Aleksander 1954- (VerfasserIn), Marušič, Dragan 1953- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2022
Schriftenreihe:Cambridge studies in advanced mathematics 198
Schlagworte:
Zusammenfassung:Introduction and constructions -- The petersen graph, blocks, and actions of A -- Some motivating problems -- Graphs with imprimitive automorphism group -- The end of the beginning -- Other classes of graphs -- The Cayley isomorphism problem -- Automorphism groups of vertex-transitive graphs -- Classifying vertex-transitive graphs -- Symmetric graphs -- Hamiltonicity -- Semiregularity -- Graphs with other types of symmetry : half-arc-transitive graphs and semisymmetric graphs -- Fare you well
"This is the first full-length book on the major theme of symmetry in graphs. Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highly symmetric graphs, particularly vertex-transitive graphs, and other combinatorial structures, primarily by group-theoretic techniques. In practice, the street goes both ways and these investigations shed new light on permutation groups and related algebraic structures. The book assumes a first course in graph theory and group theory but no specialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins with the basic material before introducing the field's major problems and most active research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and with over 450 exercises, it is an essential introduction to the field for graduate students and a valuable addition to any algebraic graph theorist's bookshelf"--
Beschreibung:Includes bibliographical references and indexes
Beschreibung:xi, 513 Seiten Illustrationen
ISBN:9781108429061
1108429068

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!