Thermal energy storage: systems and applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ, USA ; Chichester, West Sussex, UK
Wiley
[2021]
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | DE-634 DE-1102 DE-91 Volltext |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xvii, 653 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119713166 9781119713173 9781119713142 |
DOI: | 10.1002/9781119713173 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048228667 | ||
003 | DE-604 | ||
005 | 20240531 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2021 xx a||| o|||| 00||| eng d | ||
020 | |a 9781119713166 |c PDF |9 978-1-119-71316-6 | ||
020 | |a 9781119713173 |c obook |9 978-1-119-71317-3 | ||
020 | |a 9781119713142 |q EPUB |9 978-1-119-71314-2 | ||
024 | 7 | |a 10.1002/9781119713173 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6719368 | ||
035 | |a (ZDB-30-PAD)EBC6719368 | ||
035 | |a (ZDB-89-EBL)EBL6719368 | ||
035 | |a (OCoLC)1267763947 | ||
035 | |a (DE-599)BVBBV048228667 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 |a DE-1102 |a DE-634 | ||
082 | 0 | |a 621.402/8 | |
084 | |a ZP 4100 |0 (DE-625)157977: |2 rvk | ||
084 | |a ERG 820 |2 stub | ||
100 | 1 | |a Dincer, Ibrahim |d 1964- |e Verfasser |0 (DE-588)1042589615 |4 aut | |
245 | 1 | 0 | |a Thermal energy storage |b systems and applications |c İbrahim Dinçer and Marc A. Rosen |
250 | |a Third edition | ||
264 | 1 | |a Hoboken, NJ, USA ; Chichester, West Sussex, UK |b Wiley |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xvii, 653 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage | |
505 | 8 | |a 2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES. | |
505 | 8 | |a 3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage | |
505 | 8 | |a 4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure | |
505 | 8 | |a 4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems | |
505 | 8 | |a 5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube | |
650 | 0 | 7 | |a Wärmespeicherung |0 (DE-588)4188871-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wärmespeicherung |0 (DE-588)4188871-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rosen, Marc |d 1958- |e Verfasser |0 (DE-588)1056139412 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Dinçer, Ibrahim |t Thermal Energy Storage |d Newark : John Wiley & Sons, Incorporated,c2021 |n Druck-Ausgabe |z 978-1-119-71315-9 |
856 | 4 | 0 | |u https://doi.org/10.1002/9781119713173 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-35-WIC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033609387 | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119713173 |l DE-634 |p ZDB-35-WIC |q BTU_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119713173 |l DE-1102 |p ZDB-35-WIC |q FAN_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6719368 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1823509331430080512 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dincer, Ibrahim 1964- Rosen, Marc 1958- |
author_GND | (DE-588)1042589615 (DE-588)1056139412 |
author_facet | Dincer, Ibrahim 1964- Rosen, Marc 1958- |
author_role | aut aut |
author_sort | Dincer, Ibrahim 1964- |
author_variant | i d id m r mr |
building | Verbundindex |
bvnumber | BV048228667 |
classification_rvk | ZP 4100 |
classification_tum | ERG 820 |
collection | ZDB-30-PQE ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage 2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES. 3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage 4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure 4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems 5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube |
ctrlnum | (ZDB-30-PQE)EBC6719368 (ZDB-30-PAD)EBC6719368 (ZDB-89-EBL)EBL6719368 (OCoLC)1267763947 (DE-599)BVBBV048228667 |
dewey-full | 621.402/8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/8 |
dewey-search | 621.402/8 |
dewey-sort | 3621.402 18 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Energietechnik, Energiewirtschaft Energietechnik |
discipline_str_mv | Energietechnik, Energiewirtschaft Energietechnik |
doi_str_mv | 10.1002/9781119713173 |
edition | Third edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV048228667</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240531</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119713166</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-71316-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119713173</subfield><subfield code="c">obook</subfield><subfield code="9">978-1-119-71317-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119713142</subfield><subfield code="q">EPUB</subfield><subfield code="9">978-1-119-71314-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119713173</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6719368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6719368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6719368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1267763947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048228667</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 4100</subfield><subfield code="0">(DE-625)157977:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 820</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dincer, Ibrahim</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042589615</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal energy storage</subfield><subfield code="b">systems and applications</subfield><subfield code="c">İbrahim Dinçer and Marc A. Rosen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA ; Chichester, West Sussex, UK</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 653 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmespeicherung</subfield><subfield code="0">(DE-588)4188871-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmespeicherung</subfield><subfield code="0">(DE-588)4188871-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosen, Marc</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1056139412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Dinçer, Ibrahim</subfield><subfield code="t">Thermal Energy Storage</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-71315-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/9781119713173</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033609387</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119713173</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">BTU_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119713173</subfield><subfield code="l">DE-1102</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FAN_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6719368</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048228667 |
illustrated | Illustrated |
index_date | 2024-07-03T19:50:52Z |
indexdate | 2025-02-08T17:00:14Z |
institution | BVB |
isbn | 9781119713166 9781119713173 9781119713142 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033609387 |
oclc_num | 1267763947 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 DE-1102 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-83 DE-1102 DE-634 |
physical | 1 Online-Ressource (xvii, 653 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-35-WIC ZDB-35-WIC BTU_Kauf ZDB-35-WIC FAN_PDA_WIC_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley |
record_format | marc |
spelling | Dincer, Ibrahim 1964- Verfasser (DE-588)1042589615 aut Thermal energy storage systems and applications İbrahim Dinçer and Marc A. Rosen Third edition Hoboken, NJ, USA ; Chichester, West Sussex, UK Wiley [2021] © 2021 1 Online-Ressource (xvii, 653 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage 2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES. 3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage 4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure 4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems 5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube Wärmespeicherung (DE-588)4188871-6 gnd rswk-swf Wärmespeicherung (DE-588)4188871-6 s DE-604 Rosen, Marc 1958- Verfasser (DE-588)1056139412 aut Erscheint auch als Dinçer, Ibrahim Thermal Energy Storage Newark : John Wiley & Sons, Incorporated,c2021 Druck-Ausgabe 978-1-119-71315-9 https://doi.org/10.1002/9781119713173 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dincer, Ibrahim 1964- Rosen, Marc 1958- Thermal energy storage systems and applications Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage 2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES. 3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage 4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure 4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems 5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube Wärmespeicherung (DE-588)4188871-6 gnd |
subject_GND | (DE-588)4188871-6 |
title | Thermal energy storage systems and applications |
title_auth | Thermal energy storage systems and applications |
title_exact_search | Thermal energy storage systems and applications |
title_exact_search_txtP | Thermal energy storage systems and applications |
title_full | Thermal energy storage systems and applications İbrahim Dinçer and Marc A. Rosen |
title_fullStr | Thermal energy storage systems and applications İbrahim Dinçer and Marc A. Rosen |
title_full_unstemmed | Thermal energy storage systems and applications İbrahim Dinçer and Marc A. Rosen |
title_short | Thermal energy storage |
title_sort | thermal energy storage systems and applications |
title_sub | systems and applications |
topic | Wärmespeicherung (DE-588)4188871-6 gnd |
topic_facet | Wärmespeicherung |
url | https://doi.org/10.1002/9781119713173 |
work_keys_str_mv | AT dinceribrahim thermalenergystoragesystemsandapplications AT rosenmarc thermalenergystoragesystemsandapplications |