PID Passivity-Based Control of Nonlinear Systems with Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2021
|
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (243 Seiten) |
ISBN: | 9781119694199 9781119694175 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048228646 | ||
003 | DE-604 | ||
005 | 20240219 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119694199 |9 978-1-119-69419-9 | ||
020 | |a 9781119694175 |9 978-1-119-69417-5 | ||
024 | 7 | |a 10.1002/9781119694199 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6715204 | ||
035 | |a (ZDB-30-PAD)EBC6715204 | ||
035 | |a (ZDB-89-EBL)EBL6715204 | ||
035 | |a (OCoLC)1266908513 | ||
035 | |a (DE-599)BVBBV048228646 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 629.836 | |
100 | 1 | |a Ortega, Romeo |d 1954- |e Verfasser |0 (DE-588)120106574 |4 aut | |
245 | 1 | 0 | |a PID Passivity-Based Control of Nonlinear Systems with Applications |c Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (243 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters | |
505 | 8 | |a 4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents | |
505 | 8 | |a 7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems | |
505 | 8 | |a 8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA. | |
650 | 0 | 7 | |a PID-Regler |0 (DE-588)4226247-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 0 | 1 | |a PID-Regler |0 (DE-588)4226247-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Romero, José Guadalupe |e Sonstige |4 oth | |
700 | 1 | |a Borja, Pablo |e Sonstige |4 oth | |
700 | 1 | |a Donaire, Alejandro |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ortega, Romeo |t PID Passivity-Based Control of Nonlinear Systems with Applications |d Newark : John Wiley & Sons, Incorporated,c2021 |z 9781119694168 |
912 | |a ZDB-35-WIC |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033609366 |
Datensatz im Suchindex
_version_ | 1804184011569889280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ortega, Romeo 1954- |
author_GND | (DE-588)120106574 |
author_facet | Ortega, Romeo 1954- |
author_role | aut |
author_sort | Ortega, Romeo 1954- |
author_variant | r o ro |
building | Verbundindex |
bvnumber | BV048228646 |
collection | ZDB-35-WIC ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters 4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents 7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems 8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6715204 (ZDB-30-PAD)EBC6715204 (ZDB-89-EBL)EBL6715204 (OCoLC)1266908513 (DE-599)BVBBV048228646 |
dewey-full | 629.836 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.836 |
dewey-search | 629.836 |
dewey-sort | 3629.836 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08855nmm a2200517zc 4500</leader><controlfield tag="001">BV048228646</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240219 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119694199</subfield><subfield code="9">978-1-119-69419-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119694175</subfield><subfield code="9">978-1-119-69417-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119694199</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6715204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6715204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6715204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1266908513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048228646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.836</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ortega, Romeo</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120106574</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PID Passivity-Based Control of Nonlinear Systems with Applications</subfield><subfield code="c">Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (243 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">PID-Regler</subfield><subfield code="0">(DE-588)4226247-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">PID-Regler</subfield><subfield code="0">(DE-588)4226247-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romero, José Guadalupe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borja, Pablo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Donaire, Alejandro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ortega, Romeo</subfield><subfield code="t">PID Passivity-Based Control of Nonlinear Systems with Applications</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">9781119694168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033609366</subfield></datafield></record></collection> |
id | DE-604.BV048228646 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:52Z |
indexdate | 2024-07-10T09:32:33Z |
institution | BVB |
isbn | 9781119694199 9781119694175 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033609366 |
oclc_num | 1266908513 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (243 Seiten) |
psigel | ZDB-35-WIC ZDB-30-PQE |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Ortega, Romeo 1954- Verfasser (DE-588)120106574 aut PID Passivity-Based Control of Nonlinear Systems with Applications Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire Newark John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (243 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters 4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents 7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems 8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA. PID-Regler (DE-588)4226247-1 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 s PID-Regler (DE-588)4226247-1 s DE-604 Romero, José Guadalupe Sonstige oth Borja, Pablo Sonstige oth Donaire, Alejandro Sonstige oth Erscheint auch als Druck-Ausgabe Ortega, Romeo PID Passivity-Based Control of Nonlinear Systems with Applications Newark : John Wiley & Sons, Incorporated,c2021 9781119694168 |
spellingShingle | Ortega, Romeo 1954- PID Passivity-Based Control of Nonlinear Systems with Applications Cover -- Title Page -- Copyright -- Contents -- Author Biographies -- Preface -- Acknowledgments -- Acronyms -- Notation -- Chapter 1 Introduction -- Chapter 2 Motivation and Basic Construction of PID Passivity‐Based Control -- 2.1 ℒ2‐Stability and Output Regulation to Zero -- 2.2 Well‐Posedness Conditions -- 2.3 PID‐PBC and the Dissipation Obstacle -- 2.3.1 Passive Systems and the Dissipation Obstacle -- 2.3.2 Steady‐State Operation and the Dissipation Obstacle -- 2.4 PI‐PBC with y0 and Control by Interconnection -- Bibliography -- Chapter 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples -- 3.1 Tuning of the PI Gains for Control of Induction Motors -- 3.1.1 Problem Formulation -- 3.1.2 Change of Coordinates -- 3.1.3 Tuning Rules and Performance Intervals -- 3.1.4 Concluding Remarks -- 3.2 PI‐PBC of a Fuel Cell System -- 3.2.1 Control Problem Formulation -- 3.2.2 Limitations of Current Controllers and the Role of Passivity -- 3.2.3 Model Linearization and Useful Properties -- 3.2.4 Main Result -- 3.2.5 An Asymptotically Stable PI‐PBC -- 3.2.6 Simulation Results -- 3.2.7 Concluding Remarks and Future Work -- Bibliography -- Chapter 4 PID‐PBC for Nonzero Regulated Output Reference -- 4.1 PI‐PBC for Global Tracking -- 4.1.1 PI Global Tracking Problem -- 4.1.2 Construction of a Shifted Passive Output -- 4.1.3 A PI Global Tracking Controller -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems -- 4.2.1 Shifted Passivity Definition -- 4.2.2 Main Results -- 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems -- 4.3.1 Problems Formulation -- 4.3.2 Shifted Passivity -- 4.3.3 Shifted Passifiability via Output‐Feedback -- 4.3.4 Stability of the Forced Equilibria -- 4.3.5 Application to Quadratic pH Systems -- 4.4 PI‐PBC of Power Converters -- 4.4.1 Model of the Power Converters 4.4.2 Construction of a Shifted Passive Output -- 4.4.3 PI Stabilization -- 4.4.4 Application to a Quadratic Boost Converter -- 4.5 PI‐PBC of HVDC Power Systems -- 4.5.1 Background -- 4.5.2 Port‐Hamiltonian Model of the System -- 4.5.3 Main Result -- 4.5.4 Relation of PI‐PBC with Akagi's PQ Method -- 4.6 PI‐PBC of Wind Energy Systems -- 4.6.1 Background -- 4.6.2 System Model -- 4.6.3 Control Problem Formulation -- 4.6.4 Proposed PI‐PBC -- 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors -- 4.7.1 Background -- 4.7.2 Motor Models -- 4.7.3 Problem Formulation -- 4.7.4 Main Result -- 4.7.5 Conclusions and Future Research -- Bibliography -- Chapter 5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems -- 5.1 Parameterization of All Passive Outputs -- 5.2 Some Particular Cases -- 5.3 Two Additional Remarks -- 5.4 Examples -- 5.4.1 A Level Control System -- 5.4.2 A Microelectromechanical Optical Switch -- Bibliography -- Chapter 6 Lyapunov Stabilization of Port‐Hamiltonian Systems -- 6.1 Generation of Lyapunov Functions -- 6.1.1 Basic PDE -- 6.1.2 Lyapunov Stability Analysis -- 6.2 Explicit Solution of the PDE -- 6.2.1 The Power Shaping Output -- 6.2.2 A More General Solution -- 6.2.3 On the Use of Multipliers -- 6.3 Derivative Action on Relative Degree Zero Outputs -- 6.3.1 Preservation of the Port‐Hamiltonian Structure of I‐PBC -- 6.3.2 Projection of the New Passive Output -- 6.3.3 Lyapunov Stabilization with the New PID‐PBC -- 6.4 Examples -- 6.4.1 A Microelectromechanical Optical Switch (Continued) -- 6.4.2 Boost Converter -- 6.4.3 Two‐Dimensional Controllable LTI Systems -- 6.4.4 Control by Interconnection vs. PI‐PBC -- 6.4.5 The Use of the Derivative Action -- Bibliography -- Chapter 7 Underactuated Mechanical Systems -- 7.1 Historical Review and Chapter Contents 7.1.1 Potential Energy Shaping of Fully Actuated Systems -- 7.1.2 Total Energy Shaping of Underactuated Systems -- 7.1.3 Two Formulations of PID‐PBC -- 7.2 Shaping the Energy with a PID -- 7.3 PID‐PBC of Port‐Hamiltonian Systems -- 7.3.1 Assumptions on the System -- 7.3.2 A Suitable Change of Coordinates -- 7.3.3 Generating New Passive Outputs -- 7.3.4 Projection of the Total Storage Function -- 7.3.5 Main Stability Result -- 7.4 PID‐PBC of Euler‐Lagrange Systems -- 7.4.1 Passive Outputs for Euler-Lagrange Systems -- 7.4.2 Passive Outputs for Euler-Lagrange Systems in Spong's Normal Form -- 7.5 Extensions -- 7.5.1 Tracking Constant Speed Trajectories -- 7.5.2 Removing the Cancellation of Va(qa) -- 7.5.3 Enlarging the Class of Integral Actions -- 7.6 Examples -- 7.6.1 Tracking for Inverted Pendulum on a Cart -- 7.6.2 Cart‐Pendulum on an Inclined Plane -- 7.7 PID‐PBC of Constrained Euler-Lagrange Systems -- 7.7.1 System Model and Problem Formulation -- 7.7.2 Reduced Purely Differential Model -- 7.7.3 Design of the PID‐PBC -- 7.7.4 Main Stability Result -- 7.7.5 Simulation Results -- 7.7.6 Experimental Results -- Bibliography -- Chapter 8 Disturbance Rejection in Port‐Hamiltonian Systems -- 8.1 Some Remarks on Notation and Assignable Equilibria -- 8.1.1 Notational Simplifications -- 8.1.2 Assignable Equilibria for Constant d -- 8.2 Integral Action on the Passive Output -- 8.3 Solution Using Coordinate Changes -- 8.3.1 A Feedback Equivalence Problem -- 8.3.2 Local Solutions of the Feedback Equivalent Problem -- 8.3.3 Stability of the Closed‐Loop -- 8.4 Solution Using Nonseparable Energy Functions -- 8.4.1 Matched and Unmatched Disturbances -- 8.4.2 Robust Matched Disturbance Rejection -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems -- 8.6 Robust Integral Action for Underactuated Mechanical Systems 8.6.1 Standard Interconnection and Damping Assignment PBC -- 8.6.2 Main Result -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems -- 8.7.1 System Model -- 8.7.2 Coordinate Transformation -- 8.7.3 Verification of Requisites -- 8.7.4 Robust Integral Action Controller -- 8.8 Examples -- 8.8.1 Mechanical Systems with Constant Inertia Matrix -- 8.8.2 Prismatic Robot -- 8.8.3 The Acrobot System -- 8.8.4 Disk on Disk System -- 8.8.5 Damped Vertical Take‐off and Landing Aircraft -- Bibliography -- Appendix A Passivity and Stability Theory for State‐Space Systems -- A.1 Characterization of Passive Systems -- A.2 Passivity Theorem -- A.3 Lyapunov Stability of Passive Systems -- Bibliography -- Appendix B Two Stability Results and Assignable Equilibria -- B.1 Two Stability Results -- B.2 Assignable Equilibria -- Bibliography -- Appendix C Some Differential Geometric Results -- C.1 Invariant Manifolds -- C.2 Gradient Vector Fields -- C.3 A Technical Lemma -- Bibliography -- Appendix D Port-Hamiltonian Systems -- D.1 Definition of Port‐Hamiltonian Systems and Passivity Property -- D.2 Physical Examples -- D.2.1 Mechanical Systems -- D.2.2 Electromechanical Systems -- D.2.3 Power Converters -- D.3 Euler-Lagrange Models -- D.4 Port‐Hamiltonian Representation of GAS Systems -- Bibliography -- Index -- EULA. PID-Regler (DE-588)4226247-1 gnd Nichtlineares System (DE-588)4042110-7 gnd |
subject_GND | (DE-588)4226247-1 (DE-588)4042110-7 |
title | PID Passivity-Based Control of Nonlinear Systems with Applications |
title_auth | PID Passivity-Based Control of Nonlinear Systems with Applications |
title_exact_search | PID Passivity-Based Control of Nonlinear Systems with Applications |
title_exact_search_txtP | PID Passivity-Based Control of Nonlinear Systems with Applications |
title_full | PID Passivity-Based Control of Nonlinear Systems with Applications Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire |
title_fullStr | PID Passivity-Based Control of Nonlinear Systems with Applications Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire |
title_full_unstemmed | PID Passivity-Based Control of Nonlinear Systems with Applications Romeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire |
title_short | PID Passivity-Based Control of Nonlinear Systems with Applications |
title_sort | pid passivity based control of nonlinear systems with applications |
topic | PID-Regler (DE-588)4226247-1 gnd Nichtlineares System (DE-588)4042110-7 gnd |
topic_facet | PID-Regler Nichtlineares System |
work_keys_str_mv | AT ortegaromeo pidpassivitybasedcontrolofnonlinearsystemswithapplications AT romerojoseguadalupe pidpassivitybasedcontrolofnonlinearsystemswithapplications AT borjapablo pidpassivitybasedcontrolofnonlinearsystemswithapplications AT donairealejandro pidpassivitybasedcontrolofnonlinearsystemswithapplications |