Recent advancement in microbial biotechnology: agricultural and industrial approach
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
[2021]
|
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xv, 462 Seiten) Illustrationen, Diagramme |
ISBN: | 9780128232613 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048228572 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780128232613 |9 978-0-12-823261-3 | ||
035 | |a (ZDB-30-PQE)EBC6700306 | ||
035 | |a (ZDB-30-PAD)EBC6700306 | ||
035 | |a (ZDB-89-EBL)EBL6700306 | ||
035 | |a (OCoLC)1264476704 | ||
035 | |a (DE-599)BVBBV048228572 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 660.62 | |
084 | |a CIT 925 |2 stub | ||
245 | 1 | 0 | |a Recent advancement in microbial biotechnology |b agricultural and industrial approach |c edited by Surajit De Mandal, Ajit Kumar Passari |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xv, 462 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction | |
505 | 8 | |a 2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility | |
505 | 8 | |a 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass | |
505 | 8 | |a 3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes | |
505 | 8 | |a Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy | |
505 | 8 | |a 8. Conclusions | |
700 | 1 | |a Mandal, Surajit De |4 edt | |
700 | 1 | |a Passari, Ajit Kumar |0 (DE-588)1185190112 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a De Mandal, Surajit |t Recent Advancement in Microbial Biotechnology |d San Diego : Elsevier Science & Technology,c2021 |n Druck-Ausgabe |z 978-0-12-822098-6 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033609292 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6700306 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184011538432000 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Mandal, Surajit De Passari, Ajit Kumar |
author2_role | edt edt |
author2_variant | s d m sd sdm a k p ak akp |
author_GND | (DE-588)1185190112 |
author_facet | Mandal, Surajit De Passari, Ajit Kumar |
building | Verbundindex |
bvnumber | BV048228572 |
classification_tum | CIT 925 |
collection | ZDB-30-PQE |
contents | Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction 2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass 3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy 8. Conclusions |
ctrlnum | (ZDB-30-PQE)EBC6700306 (ZDB-30-PAD)EBC6700306 (ZDB-89-EBL)EBL6700306 (OCoLC)1264476704 (DE-599)BVBBV048228572 |
dewey-full | 660.62 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.62 |
dewey-search | 660.62 |
dewey-sort | 3660.62 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie-Ingenieurwesen Biotechnologie |
discipline_str_mv | Chemie / Pharmazie Chemie-Ingenieurwesen Biotechnologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10998nmm a2200445zc 4500</leader><controlfield tag="001">BV048228572</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128232613</subfield><subfield code="9">978-0-12-823261-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6700306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6700306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6700306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1264476704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048228572</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.62</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 925</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent advancement in microbial biotechnology</subfield><subfield code="b">agricultural and industrial approach</subfield><subfield code="c">edited by Surajit De Mandal, Ajit Kumar Passari</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 462 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Conclusions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandal, Surajit De</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Passari, Ajit Kumar</subfield><subfield code="0">(DE-588)1185190112</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">De Mandal, Surajit</subfield><subfield code="t">Recent Advancement in Microbial Biotechnology</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-822098-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033609292</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6700306</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048228572 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:52Z |
indexdate | 2024-07-10T09:32:33Z |
institution | BVB |
isbn | 9780128232613 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033609292 |
oclc_num | 1264476704 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 462 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Recent advancement in microbial biotechnology agricultural and industrial approach edited by Surajit De Mandal, Ajit Kumar Passari London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press, an imprint of Elsevier [2021] © 2021 1 Online-Ressource (xv, 462 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction 2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass 3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy 8. Conclusions Mandal, Surajit De edt Passari, Ajit Kumar (DE-588)1185190112 edt Erscheint auch als De Mandal, Surajit Recent Advancement in Microbial Biotechnology San Diego : Elsevier Science & Technology,c2021 Druck-Ausgabe 978-0-12-822098-6 |
spellingShingle | Recent advancement in microbial biotechnology agricultural and industrial approach Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction 2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass 3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy 8. Conclusions |
title | Recent advancement in microbial biotechnology agricultural and industrial approach |
title_auth | Recent advancement in microbial biotechnology agricultural and industrial approach |
title_exact_search | Recent advancement in microbial biotechnology agricultural and industrial approach |
title_exact_search_txtP | Recent advancement in microbial biotechnology agricultural and industrial approach |
title_full | Recent advancement in microbial biotechnology agricultural and industrial approach edited by Surajit De Mandal, Ajit Kumar Passari |
title_fullStr | Recent advancement in microbial biotechnology agricultural and industrial approach edited by Surajit De Mandal, Ajit Kumar Passari |
title_full_unstemmed | Recent advancement in microbial biotechnology agricultural and industrial approach edited by Surajit De Mandal, Ajit Kumar Passari |
title_short | Recent advancement in microbial biotechnology |
title_sort | recent advancement in microbial biotechnology agricultural and industrial approach |
title_sub | agricultural and industrial approach |
work_keys_str_mv | AT mandalsurajitde recentadvancementinmicrobialbiotechnologyagriculturalandindustrialapproach AT passariajitkumar recentadvancementinmicrobialbiotechnologyagriculturalandindustrialapproach |