Renewable Energy for Mitigating Climate Change:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
Taylor & Francis Group
2021
|
Online-Zugang: | DE-91 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (235 Seiten) |
ISBN: | 9781000483840 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048226363 | ||
003 | DE-604 | ||
005 | 20231023 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2021 xx o|||| 00||| eng d | ||
020 | |a 9781000483840 |9 978-1-00-048384-0 | ||
035 | |a (ZDB-30-PQE)EBC6787197 | ||
035 | |a (ZDB-30-PAD)EBC6787197 | ||
035 | |a (ZDB-89-EBL)EBL6787197 | ||
035 | |a (OCoLC)1281981316 | ||
035 | |a (DE-599)BVBBV048226363 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91S | ||
082 | 0 | |a 333.79/4 | |
084 | |a UMW 145 |2 stub | ||
084 | |a GEO 781 |2 stub | ||
084 | |a ERG 700 |2 stub | ||
100 | 1 | |a Stagner, Jacqueline A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Renewable Energy for Mitigating Climate Change |
264 | 1 | |a Milton |b Taylor & Francis Group |c 2021 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (235 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor Biographies -- Contributors -- Chapter 1 Furthering Renewable Energy for Climate Change Mitigation: Case Study on the Implementation in Eco-Industrial ... -- 1.1 Introduction -- 1.2 The Promotion of Renewable Energy in Thailand -- 1.3 Eco-Industrial Estates (EIE) in Thailand and Its Climate Change Mitigation -- 1.4 Furthering Renewable Energy in Eco-Industrial Estates -- 1.5 Concluding Remarks -- References -- Chapter 2 Estimation of Global Solar Energy to Mitigate World Energy and Environmental Vulnerability -- Highlights -- 2.1 Introduction -- 2.2 Materials, Methods, and Simulation -- 2.2.1 Calculation of the Net Solar Energy on Earth -- 2.2.2 Modeling of Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.3 Results and Discussion -- 2.3.1 Calculation of the Net Solar Energy on Earth -- 2.3.2 Modeling Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.4 Conclusion -- Acknowledgments -- References -- Chapter 3 Energy Storage: A Practical Solution to Increase Wind Energy Integration in the US Electricity Sector -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 Energy Demand, Variability, and Demand-Based Solutions -- 3.2.2 Energy Storage Solutions -- 3.2.3 Energy Storage and Costs -- 3.3 Discussion and Conclusions -- References -- Chapter 4 Investigating the Electricity Portfolio Optimization for Renewable Energy Sources -- 4.1 Introduction -- 4.2 Literature -- 4.2.1 MPT and MV Optimization Model -- 4.3 MAD Optimization Model -- 4.4 Renewable Energy Resources of Turkey -- 4.4.1 Geothermal Energy Generation in Turkey -- 4.5 Data and Analysis -- 4.5.1 Minimum Risk Objective Function in MV and MAD Optimal Portfolios | |
505 | 8 | |a 4.5.2 Maximum Return Objective Function in MV and MAD Optimal Portfolios -- 4.5.3 Maximum Sharpe Ratio Objective Function in MV and MAD Optimal Portfolios -- 4.5.4 Maximum Utility (A = 3, A = 4, A = 5) Objective Function in MV and MAD Optimal Portfolios -- 4.5.5 Comparison of Performances of the MV and MAD Optimal Portfolios -- 4.6 Conclusion -- References -- Chapter 5 The Impact of Traditional Natural Stones on Energy Efficiency for Sustainable Architecture: The Case of an ... -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 The Projecting of the Authentic Restaurant -- 5.2.2 Building Components Used in the Analysis of the Authentic Restaurant -- 5.3 The Historical Framework, Climatic Factors, and Location of the Harput Region -- 5.3.1 The Historical Framework and Location of the Harput Region -- 5.3.2 The Climatic Factors Affecting the Analysis of the Harput Region -- 5.4 The Energy Efficiency Analysis With Building Energy Modeling of the Authentic Restaurant Building -- 5.4.1 The Evaluation of Energy Consumption of the Authentic Restaurant's Building Walls -- 5.4.2 The Evaluation of the Energy Cost of the Authentic Restaurant Building Walls -- 5.4.3 Evaluation of Energy Usage Intensity of the Authentic Restaurant's Building Walls -- 5.5 Conclusions -- References -- Chapter 6 Limits of Waste Materials on Concrete Mixture Base Using Digital Design and Fabrication Techniques -- 6.1 Introduction -- 6.2 Waste Materials Into Question -- 6.2.1 Plastic Aggregate -- 6.2.2 Expanded Polystyrene Foam -- 6.2.3 Stone-Cutting Slurry Waste -- 6.3 Case Study -- 6.3.1 Design and Simulation: Outdoor Bench -- 6.3.2 Prototyping: Mold Fabrication -- 6.3.3 Testing Mixtures With Waste Materials -- 6.4 Contribution to the Sustainable Development Goal 9 -- 6.5 Conclusions -- References | |
505 | 8 | |a Chapter 7 Remote 3D Printing for the Integration of Clay-Based Materials in Sustainable Architectural Fabrication -- 7.1 Introduction -- 7.2 Cyber Manufacturing -- 7.3 Remote 3D Printing -- 7.4 Materials and Methods (Case Study) -- 7.4.1 Design (3D Printing on Architectural Scale) -- 7.4.2 Designing the Material -- 7.4.3 Topology Optimization -- 7.4.4 3D Printer and Calibration Process -- 7.4.5 Remote 3D Printing (Communication, Feedback-Decision Making) -- 7.5 Results and Discussion -- 7.5.1 Material Tuning -- 7.5.2 3D Printing Calibration/Feedback-Decision Making Loop -- 7.5.3 Design Optimization -- 7.5.4 Remote Printing -- 7.6 Conclusion -- References -- Chapter 8 Employing Columba Livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella Spp ... -- 8.1 Introduction -- 8.2 Analyzing the Tri-Symbiosis: Columba Livia, Homo Sapiens, and Chlorella Spp -- 8.3 Designing the Ecological Function -- 8.3.1 Bio Agent: Chlorella Spp Cultivation -- 8.3.2 Photo Bioreactor Design for Mass Cultivation of Chlorella Spp -- 8.3.3 Behavioral Mathematical Model: Swarm (Flocking) Behavioral Simulation -- 8.3.4 Prototyping and Digital Fabrication -- 8.4 Conclusion -- References -- Chapter 9 Addressing Agricultural Pressures on Water Resources: A DEA Environmental Assessment in the Case of European ... -- 9.1 Introduction -- 9.2 Case Study -- 9.3 Methodology and Data -- 9.3.1 Method -- 9.3.2 Data -- 9.4 Results -- 9.5 Conclusion -- References -- Chapter 10 The Viability of Nuclear Power as an Alternative to Renewables for Clean Energy for Climate Change Mitigation -- 10.1 Introduction -- 10.2 Nuclear Power -- 10.3 Nuclear Power Innovation -- 10.3.1 Investments in the Development of Advanced Nuclear Reactors -- 10.3.1.1 The United States -- 10.3.1.2 Russia -- 10.3.1.3 China -- 10.3.1.4 Other Public Investments in Advanced Nuclear Reactors | |
505 | 8 | |a 10.3.2 Private Sector Investments in the Development of Advanced Nuclear Reactors -- 10.4 Regulations -- 10.5 NRC Discussions of Gen IV Reactors -- 10.6 Conclusions -- Notes -- References -- Index | |
700 | 1 | |a Ting, David S. -K. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Stagner, Jacqueline A. |t Renewable Energy for Mitigating Climate Change |d Milton : Taylor & Francis Group,c2021 |z 9780367758110 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033607093 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6787197 |l DE-91 |p ZDB-30-PQE |q TUM_Einzelkauf_2023 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1818957092979998720 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stagner, Jacqueline A. |
author_facet | Stagner, Jacqueline A. |
author_role | aut |
author_sort | Stagner, Jacqueline A. |
author_variant | j a s ja jas |
building | Verbundindex |
bvnumber | BV048226363 |
classification_tum | UMW 145 GEO 781 ERG 700 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor Biographies -- Contributors -- Chapter 1 Furthering Renewable Energy for Climate Change Mitigation: Case Study on the Implementation in Eco-Industrial ... -- 1.1 Introduction -- 1.2 The Promotion of Renewable Energy in Thailand -- 1.3 Eco-Industrial Estates (EIE) in Thailand and Its Climate Change Mitigation -- 1.4 Furthering Renewable Energy in Eco-Industrial Estates -- 1.5 Concluding Remarks -- References -- Chapter 2 Estimation of Global Solar Energy to Mitigate World Energy and Environmental Vulnerability -- Highlights -- 2.1 Introduction -- 2.2 Materials, Methods, and Simulation -- 2.2.1 Calculation of the Net Solar Energy on Earth -- 2.2.2 Modeling of Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.3 Results and Discussion -- 2.3.1 Calculation of the Net Solar Energy on Earth -- 2.3.2 Modeling Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.4 Conclusion -- Acknowledgments -- References -- Chapter 3 Energy Storage: A Practical Solution to Increase Wind Energy Integration in the US Electricity Sector -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 Energy Demand, Variability, and Demand-Based Solutions -- 3.2.2 Energy Storage Solutions -- 3.2.3 Energy Storage and Costs -- 3.3 Discussion and Conclusions -- References -- Chapter 4 Investigating the Electricity Portfolio Optimization for Renewable Energy Sources -- 4.1 Introduction -- 4.2 Literature -- 4.2.1 MPT and MV Optimization Model -- 4.3 MAD Optimization Model -- 4.4 Renewable Energy Resources of Turkey -- 4.4.1 Geothermal Energy Generation in Turkey -- 4.5 Data and Analysis -- 4.5.1 Minimum Risk Objective Function in MV and MAD Optimal Portfolios 4.5.2 Maximum Return Objective Function in MV and MAD Optimal Portfolios -- 4.5.3 Maximum Sharpe Ratio Objective Function in MV and MAD Optimal Portfolios -- 4.5.4 Maximum Utility (A = 3, A = 4, A = 5) Objective Function in MV and MAD Optimal Portfolios -- 4.5.5 Comparison of Performances of the MV and MAD Optimal Portfolios -- 4.6 Conclusion -- References -- Chapter 5 The Impact of Traditional Natural Stones on Energy Efficiency for Sustainable Architecture: The Case of an ... -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 The Projecting of the Authentic Restaurant -- 5.2.2 Building Components Used in the Analysis of the Authentic Restaurant -- 5.3 The Historical Framework, Climatic Factors, and Location of the Harput Region -- 5.3.1 The Historical Framework and Location of the Harput Region -- 5.3.2 The Climatic Factors Affecting the Analysis of the Harput Region -- 5.4 The Energy Efficiency Analysis With Building Energy Modeling of the Authentic Restaurant Building -- 5.4.1 The Evaluation of Energy Consumption of the Authentic Restaurant's Building Walls -- 5.4.2 The Evaluation of the Energy Cost of the Authentic Restaurant Building Walls -- 5.4.3 Evaluation of Energy Usage Intensity of the Authentic Restaurant's Building Walls -- 5.5 Conclusions -- References -- Chapter 6 Limits of Waste Materials on Concrete Mixture Base Using Digital Design and Fabrication Techniques -- 6.1 Introduction -- 6.2 Waste Materials Into Question -- 6.2.1 Plastic Aggregate -- 6.2.2 Expanded Polystyrene Foam -- 6.2.3 Stone-Cutting Slurry Waste -- 6.3 Case Study -- 6.3.1 Design and Simulation: Outdoor Bench -- 6.3.2 Prototyping: Mold Fabrication -- 6.3.3 Testing Mixtures With Waste Materials -- 6.4 Contribution to the Sustainable Development Goal 9 -- 6.5 Conclusions -- References Chapter 7 Remote 3D Printing for the Integration of Clay-Based Materials in Sustainable Architectural Fabrication -- 7.1 Introduction -- 7.2 Cyber Manufacturing -- 7.3 Remote 3D Printing -- 7.4 Materials and Methods (Case Study) -- 7.4.1 Design (3D Printing on Architectural Scale) -- 7.4.2 Designing the Material -- 7.4.3 Topology Optimization -- 7.4.4 3D Printer and Calibration Process -- 7.4.5 Remote 3D Printing (Communication, Feedback-Decision Making) -- 7.5 Results and Discussion -- 7.5.1 Material Tuning -- 7.5.2 3D Printing Calibration/Feedback-Decision Making Loop -- 7.5.3 Design Optimization -- 7.5.4 Remote Printing -- 7.6 Conclusion -- References -- Chapter 8 Employing Columba Livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella Spp ... -- 8.1 Introduction -- 8.2 Analyzing the Tri-Symbiosis: Columba Livia, Homo Sapiens, and Chlorella Spp -- 8.3 Designing the Ecological Function -- 8.3.1 Bio Agent: Chlorella Spp Cultivation -- 8.3.2 Photo Bioreactor Design for Mass Cultivation of Chlorella Spp -- 8.3.3 Behavioral Mathematical Model: Swarm (Flocking) Behavioral Simulation -- 8.3.4 Prototyping and Digital Fabrication -- 8.4 Conclusion -- References -- Chapter 9 Addressing Agricultural Pressures on Water Resources: A DEA Environmental Assessment in the Case of European ... -- 9.1 Introduction -- 9.2 Case Study -- 9.3 Methodology and Data -- 9.3.1 Method -- 9.3.2 Data -- 9.4 Results -- 9.5 Conclusion -- References -- Chapter 10 The Viability of Nuclear Power as an Alternative to Renewables for Clean Energy for Climate Change Mitigation -- 10.1 Introduction -- 10.2 Nuclear Power -- 10.3 Nuclear Power Innovation -- 10.3.1 Investments in the Development of Advanced Nuclear Reactors -- 10.3.1.1 The United States -- 10.3.1.2 Russia -- 10.3.1.3 China -- 10.3.1.4 Other Public Investments in Advanced Nuclear Reactors 10.3.2 Private Sector Investments in the Development of Advanced Nuclear Reactors -- 10.4 Regulations -- 10.5 NRC Discussions of Gen IV Reactors -- 10.6 Conclusions -- Notes -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6787197 (ZDB-30-PAD)EBC6787197 (ZDB-89-EBL)EBL6787197 (OCoLC)1281981316 (DE-599)BVBBV048226363 |
dewey-full | 333.79/4 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.79/4 |
dewey-search | 333.79/4 |
dewey-sort | 3333.79 14 |
dewey-tens | 330 - Economics |
discipline | Geowissenschaften Energietechnik, Energiewirtschaft Physik Wirtschaftswissenschaften Umwelt |
discipline_str_mv | Geowissenschaften Energietechnik, Energiewirtschaft Physik Wirtschaftswissenschaften Umwelt |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV048226363</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231023</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000483840</subfield><subfield code="9">978-1-00-048384-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6787197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6787197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6787197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281981316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048226363</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91S</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.79/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 145</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">GEO 781</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 700</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stagner, Jacqueline A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renewable Energy for Mitigating Climate Change</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (235 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor Biographies -- Contributors -- Chapter 1 Furthering Renewable Energy for Climate Change Mitigation: Case Study on the Implementation in Eco-Industrial ... -- 1.1 Introduction -- 1.2 The Promotion of Renewable Energy in Thailand -- 1.3 Eco-Industrial Estates (EIE) in Thailand and Its Climate Change Mitigation -- 1.4 Furthering Renewable Energy in Eco-Industrial Estates -- 1.5 Concluding Remarks -- References -- Chapter 2 Estimation of Global Solar Energy to Mitigate World Energy and Environmental Vulnerability -- Highlights -- 2.1 Introduction -- 2.2 Materials, Methods, and Simulation -- 2.2.1 Calculation of the Net Solar Energy on Earth -- 2.2.2 Modeling of Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.3 Results and Discussion -- 2.3.1 Calculation of the Net Solar Energy on Earth -- 2.3.2 Modeling Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.4 Conclusion -- Acknowledgments -- References -- Chapter 3 Energy Storage: A Practical Solution to Increase Wind Energy Integration in the US Electricity Sector -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 Energy Demand, Variability, and Demand-Based Solutions -- 3.2.2 Energy Storage Solutions -- 3.2.3 Energy Storage and Costs -- 3.3 Discussion and Conclusions -- References -- Chapter 4 Investigating the Electricity Portfolio Optimization for Renewable Energy Sources -- 4.1 Introduction -- 4.2 Literature -- 4.2.1 MPT and MV Optimization Model -- 4.3 MAD Optimization Model -- 4.4 Renewable Energy Resources of Turkey -- 4.4.1 Geothermal Energy Generation in Turkey -- 4.5 Data and Analysis -- 4.5.1 Minimum Risk Objective Function in MV and MAD Optimal Portfolios</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.2 Maximum Return Objective Function in MV and MAD Optimal Portfolios -- 4.5.3 Maximum Sharpe Ratio Objective Function in MV and MAD Optimal Portfolios -- 4.5.4 Maximum Utility (A = 3, A = 4, A = 5) Objective Function in MV and MAD Optimal Portfolios -- 4.5.5 Comparison of Performances of the MV and MAD Optimal Portfolios -- 4.6 Conclusion -- References -- Chapter 5 The Impact of Traditional Natural Stones on Energy Efficiency for Sustainable Architecture: The Case of an ... -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 The Projecting of the Authentic Restaurant -- 5.2.2 Building Components Used in the Analysis of the Authentic Restaurant -- 5.3 The Historical Framework, Climatic Factors, and Location of the Harput Region -- 5.3.1 The Historical Framework and Location of the Harput Region -- 5.3.2 The Climatic Factors Affecting the Analysis of the Harput Region -- 5.4 The Energy Efficiency Analysis With Building Energy Modeling of the Authentic Restaurant Building -- 5.4.1 The Evaluation of Energy Consumption of the Authentic Restaurant's Building Walls -- 5.4.2 The Evaluation of the Energy Cost of the Authentic Restaurant Building Walls -- 5.4.3 Evaluation of Energy Usage Intensity of the Authentic Restaurant's Building Walls -- 5.5 Conclusions -- References -- Chapter 6 Limits of Waste Materials on Concrete Mixture Base Using Digital Design and Fabrication Techniques -- 6.1 Introduction -- 6.2 Waste Materials Into Question -- 6.2.1 Plastic Aggregate -- 6.2.2 Expanded Polystyrene Foam -- 6.2.3 Stone-Cutting Slurry Waste -- 6.3 Case Study -- 6.3.1 Design and Simulation: Outdoor Bench -- 6.3.2 Prototyping: Mold Fabrication -- 6.3.3 Testing Mixtures With Waste Materials -- 6.4 Contribution to the Sustainable Development Goal 9 -- 6.5 Conclusions -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7 Remote 3D Printing for the Integration of Clay-Based Materials in Sustainable Architectural Fabrication -- 7.1 Introduction -- 7.2 Cyber Manufacturing -- 7.3 Remote 3D Printing -- 7.4 Materials and Methods (Case Study) -- 7.4.1 Design (3D Printing on Architectural Scale) -- 7.4.2 Designing the Material -- 7.4.3 Topology Optimization -- 7.4.4 3D Printer and Calibration Process -- 7.4.5 Remote 3D Printing (Communication, Feedback-Decision Making) -- 7.5 Results and Discussion -- 7.5.1 Material Tuning -- 7.5.2 3D Printing Calibration/Feedback-Decision Making Loop -- 7.5.3 Design Optimization -- 7.5.4 Remote Printing -- 7.6 Conclusion -- References -- Chapter 8 Employing Columba Livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella Spp ... -- 8.1 Introduction -- 8.2 Analyzing the Tri-Symbiosis: Columba Livia, Homo Sapiens, and Chlorella Spp -- 8.3 Designing the Ecological Function -- 8.3.1 Bio Agent: Chlorella Spp Cultivation -- 8.3.2 Photo Bioreactor Design for Mass Cultivation of Chlorella Spp -- 8.3.3 Behavioral Mathematical Model: Swarm (Flocking) Behavioral Simulation -- 8.3.4 Prototyping and Digital Fabrication -- 8.4 Conclusion -- References -- Chapter 9 Addressing Agricultural Pressures on Water Resources: A DEA Environmental Assessment in the Case of European ... -- 9.1 Introduction -- 9.2 Case Study -- 9.3 Methodology and Data -- 9.3.1 Method -- 9.3.2 Data -- 9.4 Results -- 9.5 Conclusion -- References -- Chapter 10 The Viability of Nuclear Power as an Alternative to Renewables for Clean Energy for Climate Change Mitigation -- 10.1 Introduction -- 10.2 Nuclear Power -- 10.3 Nuclear Power Innovation -- 10.3.1 Investments in the Development of Advanced Nuclear Reactors -- 10.3.1.1 The United States -- 10.3.1.2 Russia -- 10.3.1.3 China -- 10.3.1.4 Other Public Investments in Advanced Nuclear Reactors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3.2 Private Sector Investments in the Development of Advanced Nuclear Reactors -- 10.4 Regulations -- 10.5 NRC Discussions of Gen IV Reactors -- 10.6 Conclusions -- Notes -- References -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ting, David S. -K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Stagner, Jacqueline A.</subfield><subfield code="t">Renewable Energy for Mitigating Climate Change</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="z">9780367758110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033607093</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6787197</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_Einzelkauf_2023</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048226363 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:45Z |
indexdate | 2024-12-20T11:04:22Z |
institution | BVB |
isbn | 9781000483840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033607093 |
oclc_num | 1281981316 |
open_access_boolean | |
owner | DE-91S DE-BY-TUM |
owner_facet | DE-91S DE-BY-TUM |
physical | 1 Online-Ressource (235 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_Einzelkauf_2023 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Taylor & Francis Group |
record_format | marc |
spelling | Stagner, Jacqueline A. Verfasser aut Renewable Energy for Mitigating Climate Change Milton Taylor & Francis Group 2021 ©2022 1 Online-Ressource (235 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor Biographies -- Contributors -- Chapter 1 Furthering Renewable Energy for Climate Change Mitigation: Case Study on the Implementation in Eco-Industrial ... -- 1.1 Introduction -- 1.2 The Promotion of Renewable Energy in Thailand -- 1.3 Eco-Industrial Estates (EIE) in Thailand and Its Climate Change Mitigation -- 1.4 Furthering Renewable Energy in Eco-Industrial Estates -- 1.5 Concluding Remarks -- References -- Chapter 2 Estimation of Global Solar Energy to Mitigate World Energy and Environmental Vulnerability -- Highlights -- 2.1 Introduction -- 2.2 Materials, Methods, and Simulation -- 2.2.1 Calculation of the Net Solar Energy on Earth -- 2.2.2 Modeling of Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.3 Results and Discussion -- 2.3.1 Calculation of the Net Solar Energy on Earth -- 2.3.2 Modeling Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.4 Conclusion -- Acknowledgments -- References -- Chapter 3 Energy Storage: A Practical Solution to Increase Wind Energy Integration in the US Electricity Sector -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 Energy Demand, Variability, and Demand-Based Solutions -- 3.2.2 Energy Storage Solutions -- 3.2.3 Energy Storage and Costs -- 3.3 Discussion and Conclusions -- References -- Chapter 4 Investigating the Electricity Portfolio Optimization for Renewable Energy Sources -- 4.1 Introduction -- 4.2 Literature -- 4.2.1 MPT and MV Optimization Model -- 4.3 MAD Optimization Model -- 4.4 Renewable Energy Resources of Turkey -- 4.4.1 Geothermal Energy Generation in Turkey -- 4.5 Data and Analysis -- 4.5.1 Minimum Risk Objective Function in MV and MAD Optimal Portfolios 4.5.2 Maximum Return Objective Function in MV and MAD Optimal Portfolios -- 4.5.3 Maximum Sharpe Ratio Objective Function in MV and MAD Optimal Portfolios -- 4.5.4 Maximum Utility (A = 3, A = 4, A = 5) Objective Function in MV and MAD Optimal Portfolios -- 4.5.5 Comparison of Performances of the MV and MAD Optimal Portfolios -- 4.6 Conclusion -- References -- Chapter 5 The Impact of Traditional Natural Stones on Energy Efficiency for Sustainable Architecture: The Case of an ... -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 The Projecting of the Authentic Restaurant -- 5.2.2 Building Components Used in the Analysis of the Authentic Restaurant -- 5.3 The Historical Framework, Climatic Factors, and Location of the Harput Region -- 5.3.1 The Historical Framework and Location of the Harput Region -- 5.3.2 The Climatic Factors Affecting the Analysis of the Harput Region -- 5.4 The Energy Efficiency Analysis With Building Energy Modeling of the Authentic Restaurant Building -- 5.4.1 The Evaluation of Energy Consumption of the Authentic Restaurant's Building Walls -- 5.4.2 The Evaluation of the Energy Cost of the Authentic Restaurant Building Walls -- 5.4.3 Evaluation of Energy Usage Intensity of the Authentic Restaurant's Building Walls -- 5.5 Conclusions -- References -- Chapter 6 Limits of Waste Materials on Concrete Mixture Base Using Digital Design and Fabrication Techniques -- 6.1 Introduction -- 6.2 Waste Materials Into Question -- 6.2.1 Plastic Aggregate -- 6.2.2 Expanded Polystyrene Foam -- 6.2.3 Stone-Cutting Slurry Waste -- 6.3 Case Study -- 6.3.1 Design and Simulation: Outdoor Bench -- 6.3.2 Prototyping: Mold Fabrication -- 6.3.3 Testing Mixtures With Waste Materials -- 6.4 Contribution to the Sustainable Development Goal 9 -- 6.5 Conclusions -- References Chapter 7 Remote 3D Printing for the Integration of Clay-Based Materials in Sustainable Architectural Fabrication -- 7.1 Introduction -- 7.2 Cyber Manufacturing -- 7.3 Remote 3D Printing -- 7.4 Materials and Methods (Case Study) -- 7.4.1 Design (3D Printing on Architectural Scale) -- 7.4.2 Designing the Material -- 7.4.3 Topology Optimization -- 7.4.4 3D Printer and Calibration Process -- 7.4.5 Remote 3D Printing (Communication, Feedback-Decision Making) -- 7.5 Results and Discussion -- 7.5.1 Material Tuning -- 7.5.2 3D Printing Calibration/Feedback-Decision Making Loop -- 7.5.3 Design Optimization -- 7.5.4 Remote Printing -- 7.6 Conclusion -- References -- Chapter 8 Employing Columba Livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella Spp ... -- 8.1 Introduction -- 8.2 Analyzing the Tri-Symbiosis: Columba Livia, Homo Sapiens, and Chlorella Spp -- 8.3 Designing the Ecological Function -- 8.3.1 Bio Agent: Chlorella Spp Cultivation -- 8.3.2 Photo Bioreactor Design for Mass Cultivation of Chlorella Spp -- 8.3.3 Behavioral Mathematical Model: Swarm (Flocking) Behavioral Simulation -- 8.3.4 Prototyping and Digital Fabrication -- 8.4 Conclusion -- References -- Chapter 9 Addressing Agricultural Pressures on Water Resources: A DEA Environmental Assessment in the Case of European ... -- 9.1 Introduction -- 9.2 Case Study -- 9.3 Methodology and Data -- 9.3.1 Method -- 9.3.2 Data -- 9.4 Results -- 9.5 Conclusion -- References -- Chapter 10 The Viability of Nuclear Power as an Alternative to Renewables for Clean Energy for Climate Change Mitigation -- 10.1 Introduction -- 10.2 Nuclear Power -- 10.3 Nuclear Power Innovation -- 10.3.1 Investments in the Development of Advanced Nuclear Reactors -- 10.3.1.1 The United States -- 10.3.1.2 Russia -- 10.3.1.3 China -- 10.3.1.4 Other Public Investments in Advanced Nuclear Reactors 10.3.2 Private Sector Investments in the Development of Advanced Nuclear Reactors -- 10.4 Regulations -- 10.5 NRC Discussions of Gen IV Reactors -- 10.6 Conclusions -- Notes -- References -- Index Ting, David S. -K. Sonstige oth Erscheint auch als Druck-Ausgabe Stagner, Jacqueline A. Renewable Energy for Mitigating Climate Change Milton : Taylor & Francis Group,c2021 9780367758110 |
spellingShingle | Stagner, Jacqueline A. Renewable Energy for Mitigating Climate Change Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor Biographies -- Contributors -- Chapter 1 Furthering Renewable Energy for Climate Change Mitigation: Case Study on the Implementation in Eco-Industrial ... -- 1.1 Introduction -- 1.2 The Promotion of Renewable Energy in Thailand -- 1.3 Eco-Industrial Estates (EIE) in Thailand and Its Climate Change Mitigation -- 1.4 Furthering Renewable Energy in Eco-Industrial Estates -- 1.5 Concluding Remarks -- References -- Chapter 2 Estimation of Global Solar Energy to Mitigate World Energy and Environmental Vulnerability -- Highlights -- 2.1 Introduction -- 2.2 Materials, Methods, and Simulation -- 2.2.1 Calculation of the Net Solar Energy on Earth -- 2.2.2 Modeling of Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.3 Results and Discussion -- 2.3.1 Calculation of the Net Solar Energy on Earth -- 2.3.2 Modeling Net Electricity Energy Generation From the Total Solar Irradiance on Earth -- 2.4 Conclusion -- Acknowledgments -- References -- Chapter 3 Energy Storage: A Practical Solution to Increase Wind Energy Integration in the US Electricity Sector -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 Energy Demand, Variability, and Demand-Based Solutions -- 3.2.2 Energy Storage Solutions -- 3.2.3 Energy Storage and Costs -- 3.3 Discussion and Conclusions -- References -- Chapter 4 Investigating the Electricity Portfolio Optimization for Renewable Energy Sources -- 4.1 Introduction -- 4.2 Literature -- 4.2.1 MPT and MV Optimization Model -- 4.3 MAD Optimization Model -- 4.4 Renewable Energy Resources of Turkey -- 4.4.1 Geothermal Energy Generation in Turkey -- 4.5 Data and Analysis -- 4.5.1 Minimum Risk Objective Function in MV and MAD Optimal Portfolios 4.5.2 Maximum Return Objective Function in MV and MAD Optimal Portfolios -- 4.5.3 Maximum Sharpe Ratio Objective Function in MV and MAD Optimal Portfolios -- 4.5.4 Maximum Utility (A = 3, A = 4, A = 5) Objective Function in MV and MAD Optimal Portfolios -- 4.5.5 Comparison of Performances of the MV and MAD Optimal Portfolios -- 4.6 Conclusion -- References -- Chapter 5 The Impact of Traditional Natural Stones on Energy Efficiency for Sustainable Architecture: The Case of an ... -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 The Projecting of the Authentic Restaurant -- 5.2.2 Building Components Used in the Analysis of the Authentic Restaurant -- 5.3 The Historical Framework, Climatic Factors, and Location of the Harput Region -- 5.3.1 The Historical Framework and Location of the Harput Region -- 5.3.2 The Climatic Factors Affecting the Analysis of the Harput Region -- 5.4 The Energy Efficiency Analysis With Building Energy Modeling of the Authentic Restaurant Building -- 5.4.1 The Evaluation of Energy Consumption of the Authentic Restaurant's Building Walls -- 5.4.2 The Evaluation of the Energy Cost of the Authentic Restaurant Building Walls -- 5.4.3 Evaluation of Energy Usage Intensity of the Authentic Restaurant's Building Walls -- 5.5 Conclusions -- References -- Chapter 6 Limits of Waste Materials on Concrete Mixture Base Using Digital Design and Fabrication Techniques -- 6.1 Introduction -- 6.2 Waste Materials Into Question -- 6.2.1 Plastic Aggregate -- 6.2.2 Expanded Polystyrene Foam -- 6.2.3 Stone-Cutting Slurry Waste -- 6.3 Case Study -- 6.3.1 Design and Simulation: Outdoor Bench -- 6.3.2 Prototyping: Mold Fabrication -- 6.3.3 Testing Mixtures With Waste Materials -- 6.4 Contribution to the Sustainable Development Goal 9 -- 6.5 Conclusions -- References Chapter 7 Remote 3D Printing for the Integration of Clay-Based Materials in Sustainable Architectural Fabrication -- 7.1 Introduction -- 7.2 Cyber Manufacturing -- 7.3 Remote 3D Printing -- 7.4 Materials and Methods (Case Study) -- 7.4.1 Design (3D Printing on Architectural Scale) -- 7.4.2 Designing the Material -- 7.4.3 Topology Optimization -- 7.4.4 3D Printer and Calibration Process -- 7.4.5 Remote 3D Printing (Communication, Feedback-Decision Making) -- 7.5 Results and Discussion -- 7.5.1 Material Tuning -- 7.5.2 3D Printing Calibration/Feedback-Decision Making Loop -- 7.5.3 Design Optimization -- 7.5.4 Remote Printing -- 7.6 Conclusion -- References -- Chapter 8 Employing Columba Livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella Spp ... -- 8.1 Introduction -- 8.2 Analyzing the Tri-Symbiosis: Columba Livia, Homo Sapiens, and Chlorella Spp -- 8.3 Designing the Ecological Function -- 8.3.1 Bio Agent: Chlorella Spp Cultivation -- 8.3.2 Photo Bioreactor Design for Mass Cultivation of Chlorella Spp -- 8.3.3 Behavioral Mathematical Model: Swarm (Flocking) Behavioral Simulation -- 8.3.4 Prototyping and Digital Fabrication -- 8.4 Conclusion -- References -- Chapter 9 Addressing Agricultural Pressures on Water Resources: A DEA Environmental Assessment in the Case of European ... -- 9.1 Introduction -- 9.2 Case Study -- 9.3 Methodology and Data -- 9.3.1 Method -- 9.3.2 Data -- 9.4 Results -- 9.5 Conclusion -- References -- Chapter 10 The Viability of Nuclear Power as an Alternative to Renewables for Clean Energy for Climate Change Mitigation -- 10.1 Introduction -- 10.2 Nuclear Power -- 10.3 Nuclear Power Innovation -- 10.3.1 Investments in the Development of Advanced Nuclear Reactors -- 10.3.1.1 The United States -- 10.3.1.2 Russia -- 10.3.1.3 China -- 10.3.1.4 Other Public Investments in Advanced Nuclear Reactors 10.3.2 Private Sector Investments in the Development of Advanced Nuclear Reactors -- 10.4 Regulations -- 10.5 NRC Discussions of Gen IV Reactors -- 10.6 Conclusions -- Notes -- References -- Index |
title | Renewable Energy for Mitigating Climate Change |
title_auth | Renewable Energy for Mitigating Climate Change |
title_exact_search | Renewable Energy for Mitigating Climate Change |
title_exact_search_txtP | Renewable Energy for Mitigating Climate Change |
title_full | Renewable Energy for Mitigating Climate Change |
title_fullStr | Renewable Energy for Mitigating Climate Change |
title_full_unstemmed | Renewable Energy for Mitigating Climate Change |
title_short | Renewable Energy for Mitigating Climate Change |
title_sort | renewable energy for mitigating climate change |
work_keys_str_mv | AT stagnerjacquelinea renewableenergyformitigatingclimatechange AT tingdavidsk renewableenergyformitigatingclimatechange |