Beginning Data Science, IoT, and AI on Single Board Computers: Core Skills and Real-World Application with the BBC Micro:bit and XinaBox
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress L. P.
2020
|
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (323 Seiten) |
ISBN: | 9781484257661 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048226079 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781484257661 |9 978-1-4842-5766-1 | ||
035 | |a (ZDB-30-PQE)EBC6273591 | ||
035 | |a (ZDB-30-PAD)EBC6273591 | ||
035 | |a (ZDB-89-EBL)EBL6273591 | ||
035 | |a (OCoLC)1178714351 | ||
035 | |a (DE-599)BVBBV048226079 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 004.678 | |
100 | 1 | |a Meitiner, Philip |e Verfasser |4 aut | |
245 | 1 | 0 | |a Beginning Data Science, IoT, and AI on Single Board Computers |b Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
264 | 1 | |a Berkeley, CA |b Apress L. P. |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (323 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Table of Contents -- About the Authors -- Foreword -- Chapter 1: Introducing Data Science -- 1.1 Introducing Data Science -- 1.2 Using Temperature -- 1.3 Measuring Temperature -- 1.4 Controlling Data -- 1.5 Understanding the Tools -- 1.6 Data Quality -- 1.7 Data Capturing -- 1.8 Experimenting with Temperature -- 1.9 Analyzing Our Results -- Analysis of Extremities -- Analysis of Averages (Central Tendency) -- Random Insights -- Analysis of Data Quality -- Introspection -- 1.10 Summary -- Chapter 2: Data Science Goes Digital -- 2.1 Making It Digital -- 2.2 Measuring Temperature Digitally -- The Role of the Microprocessor -- 2.3 Building Digital Tools -- 2.4 Using the BBC micro:bit As a Thermometer -- 2.5 Coding Guidelines Used in This Book -- 2.6 Using the micro:bit Code Editors -- 2.7 Using the "No-Code" Option -- 2.8 Coding the micro:bit Thermometer -- 2.9 Comparing Analog and Digital Thermometers -- 2.10 Analysis -- Analysis of Extremities -- Analysis of Averages: "Central Tendency" -- Analysis of Data Quality -- Introspection -- 2.11 Why the micro:bit? -- 2.12 What Kit Do We Need? -- 2.13 Selecting Our Toolkit -- 2.14 Guide to Hardware Requirements -- 2.15 Summary -- Chapter 3: Experimenting with Weather -- 3.1 Introduction -- 3.2 Measuring Weather -- 3.3 Choosing the Data to Measure -- 3.4 Experimenting with Weather -- 3.5 Building Our Weather Station Tool -- 3.6 Coding Our Weather Station -- 3.7 Upgrading the Display -- 3.8 Experimental Design -- 3.9 Visualizing the Data We Collected -- 3.10 Analyzing the Data We Collected -- 3.11 Summary -- Chapter 4: Working with Large Data Sets -- 4.1 Experimental Design -- 4.2 Using the micro:bit As a File Storage Device -- 4.3 Accessing Files on the micro:bit -- 4.4 Transferring Files onto a Computer -- 4.5 Hardware Requirements -- 4.6 Storing Sensor Data in a File | |
505 | 8 | |a 4.7 Measuring How Many Data Points We Can Store -- 4.8 Replicating the Weather Station Experiment with File Storage -- 4.9 Addressing Memory Limitations -- 4.10 Expanding Data Storage Capacity -- 4.11 Summary -- Chapter 5: Introduction to Data Analysis -- 5.1 Expanding Our Analysis Tools -- 5.2 Software for Data Analysis -- 5.3 Selecting a Spreadsheet Program -- 5.4 Measuring Correlation -- 5.5 Calculating Correlation Scores -- 5.6 Understanding a Correlation Coefficient/Score -- 5.7 Calculating the Correlation Score for Weather Data -- 5.8 Using Other Analysis Functions -- 5.9 Using Visualization Tools -- 5.10 Reporting -- 5.11 Statistical Significance -- 5.12 Summary -- Chapter 6: Introducing IoT to Data Science -- 6.1 The Weakness in Our Data Science Toolkit -- 6.2 Internet of Things Overview -- 6.3 Anatomy of the Cloud -- 6.4 Transferring Data from a micro:bit -- 6.5 Wireless Communication Options for IoT -- 6.6 Transmitting Data Using a Serial Connection -- 6.7 Summary -- Chapter 7: Using Bluetooth for Data Science -- 7.1 What Is Bluetooth? -- 7.2 Why Use Bluetooth? -- 7.3 Using BLE on micro:bit -- 7.4 Building a BLE Weather Station with Bluetooth UART -- 7.5 Using the Serial Bluetooth Terminal App -- 7.6 Coding the BLE Weather Station -- 7.7 Other Options for BLE on micro:bit -- 7.8 Summary -- Chapter 8: Investigating the micro:bit Radio -- 8.1 Standards Are Important -- 8.2 Using Radio for Input/Output -- 8.3 Using Radio to Build a Network -- 8.4 Choosing MakeCode or MicroPython -- 8.5 MakeCode Radio Groups -- 8.6 Nodes and a Collector -- 8.7 Building the Nodes -- 8.8 Building the Server/Collector -- 8.9 Summary -- Chapter 9: Using Wi-Fi to Connect to the Internet -- 9.1 Defining Our IoT Weather Station -- 9.2 Building Our Wi-Fi Weather Station -- 9.3 Updating Firmware -- 9.4 Choosing an IoT Platform -- 9.5 Setting Up the IoT Platform | |
505 | 8 | |a 9.6 Adding Our Weather Station to the IoT Platform -- 9.7 Visualizing Data in the IoT Platform -- 9.8 Coding Our Wi-Fi Weather Station -- 9.9 Powering and Running the Weather Station -- 9.10 Viewing the Data Visualizations -- 9.11 Summary -- Chapter 10: Introduction to Machine Learning and Artificial Intelligence -- 10.1 Artificial Intelligence -- 10.2 AI/ML? -- 10.3 ML/AI and Data Science -- 10.4 Thinking Like a Machine -- 10.5 Experimental Design -- 10.6 Hardware Requirements -- 10.7 Software -- 10.8 Using the Hardware -- 10.9 Analyzing the Data -- 10.10 Comparing Humans and Machines -- 10.11 Summary -- Chapter 11: Using ML Services -- 11.1 Defining Our IoT Application -- 11.2 Choosing an IoT Service Provider -- 11.3 Setting Up Microsoft Azure: Cloud Computing Services -- 11.4 Creating an IoT Hub Using Azure Portal -- 11.5 Setting Up a Weather Prediction Model in Azure Machine Learning Studio -- 11.6 Creating a Workflow Using Azure Logic Apps -- 11.7 Setting Up the workflow -- Step 1: Sending Data from the Weather Station Instrument -- Step 2: Passing Data into the ML Service -- Step 3: Interpreting ("Parsing") Results from the ML Service ("Parse JSON") -- Step 4: Setting Up a Variable to Store the Data from the ML Service -- Step 5: Sending Data Back to the Weather Station Instrument -- 11.8 Testing the Workflow -- 11.9 Summary -- Chapter 12: Connecting an Edge Device to the IoT Application -- 12.1 Choosing the Hardware -- 12.2 The Role of the Edge Device -- 12.3 Building the Edge Device -- 12.4 Coding the Edge Device -- 12.5 Using the Edge Device -- 12.6 Improving the Edge Device -- 12.7 Peering Under the Hood of the IoT Application -- Parse JSON -- Initialize Variable -- Response -- When a HTTP Request Is Received -- 12.8 Data Analysis -- 12.9 Summary -- Chapter 13: Consolidating our Learnings -- 13.1 Am I a Data Scientist? | |
505 | 8 | |a 13.2 Becoming a Data Scientist -- 13.3 Debunking Some Myths -- 13.4 Extrapolating Learnings -- 13.5 Applying Our Knowledge to Different Builds -- 13.6 Ethical Considerations -- 13.7 Summary -- Index | |
650 | 4 | |a Internet of things | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Microprocessors | |
700 | 1 | |a Seneviratne, Pradeeka |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Meitiner, Philip |t Beginning Data Science, IoT, and AI on Single Board Computers |d Berkeley, CA : Apress L. P.,c2020 |z 9781484257654 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033606809 |
Datensatz im Suchindex
_version_ | 1804184008299380736 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Meitiner, Philip |
author_facet | Meitiner, Philip |
author_role | aut |
author_sort | Meitiner, Philip |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV048226079 |
collection | ZDB-30-PQE |
contents | Intro -- Table of Contents -- About the Authors -- Foreword -- Chapter 1: Introducing Data Science -- 1.1 Introducing Data Science -- 1.2 Using Temperature -- 1.3 Measuring Temperature -- 1.4 Controlling Data -- 1.5 Understanding the Tools -- 1.6 Data Quality -- 1.7 Data Capturing -- 1.8 Experimenting with Temperature -- 1.9 Analyzing Our Results -- Analysis of Extremities -- Analysis of Averages (Central Tendency) -- Random Insights -- Analysis of Data Quality -- Introspection -- 1.10 Summary -- Chapter 2: Data Science Goes Digital -- 2.1 Making It Digital -- 2.2 Measuring Temperature Digitally -- The Role of the Microprocessor -- 2.3 Building Digital Tools -- 2.4 Using the BBC micro:bit As a Thermometer -- 2.5 Coding Guidelines Used in This Book -- 2.6 Using the micro:bit Code Editors -- 2.7 Using the "No-Code" Option -- 2.8 Coding the micro:bit Thermometer -- 2.9 Comparing Analog and Digital Thermometers -- 2.10 Analysis -- Analysis of Extremities -- Analysis of Averages: "Central Tendency" -- Analysis of Data Quality -- Introspection -- 2.11 Why the micro:bit? -- 2.12 What Kit Do We Need? -- 2.13 Selecting Our Toolkit -- 2.14 Guide to Hardware Requirements -- 2.15 Summary -- Chapter 3: Experimenting with Weather -- 3.1 Introduction -- 3.2 Measuring Weather -- 3.3 Choosing the Data to Measure -- 3.4 Experimenting with Weather -- 3.5 Building Our Weather Station Tool -- 3.6 Coding Our Weather Station -- 3.7 Upgrading the Display -- 3.8 Experimental Design -- 3.9 Visualizing the Data We Collected -- 3.10 Analyzing the Data We Collected -- 3.11 Summary -- Chapter 4: Working with Large Data Sets -- 4.1 Experimental Design -- 4.2 Using the micro:bit As a File Storage Device -- 4.3 Accessing Files on the micro:bit -- 4.4 Transferring Files onto a Computer -- 4.5 Hardware Requirements -- 4.6 Storing Sensor Data in a File 4.7 Measuring How Many Data Points We Can Store -- 4.8 Replicating the Weather Station Experiment with File Storage -- 4.9 Addressing Memory Limitations -- 4.10 Expanding Data Storage Capacity -- 4.11 Summary -- Chapter 5: Introduction to Data Analysis -- 5.1 Expanding Our Analysis Tools -- 5.2 Software for Data Analysis -- 5.3 Selecting a Spreadsheet Program -- 5.4 Measuring Correlation -- 5.5 Calculating Correlation Scores -- 5.6 Understanding a Correlation Coefficient/Score -- 5.7 Calculating the Correlation Score for Weather Data -- 5.8 Using Other Analysis Functions -- 5.9 Using Visualization Tools -- 5.10 Reporting -- 5.11 Statistical Significance -- 5.12 Summary -- Chapter 6: Introducing IoT to Data Science -- 6.1 The Weakness in Our Data Science Toolkit -- 6.2 Internet of Things Overview -- 6.3 Anatomy of the Cloud -- 6.4 Transferring Data from a micro:bit -- 6.5 Wireless Communication Options for IoT -- 6.6 Transmitting Data Using a Serial Connection -- 6.7 Summary -- Chapter 7: Using Bluetooth for Data Science -- 7.1 What Is Bluetooth? -- 7.2 Why Use Bluetooth? -- 7.3 Using BLE on micro:bit -- 7.4 Building a BLE Weather Station with Bluetooth UART -- 7.5 Using the Serial Bluetooth Terminal App -- 7.6 Coding the BLE Weather Station -- 7.7 Other Options for BLE on micro:bit -- 7.8 Summary -- Chapter 8: Investigating the micro:bit Radio -- 8.1 Standards Are Important -- 8.2 Using Radio for Input/Output -- 8.3 Using Radio to Build a Network -- 8.4 Choosing MakeCode or MicroPython -- 8.5 MakeCode Radio Groups -- 8.6 Nodes and a Collector -- 8.7 Building the Nodes -- 8.8 Building the Server/Collector -- 8.9 Summary -- Chapter 9: Using Wi-Fi to Connect to the Internet -- 9.1 Defining Our IoT Weather Station -- 9.2 Building Our Wi-Fi Weather Station -- 9.3 Updating Firmware -- 9.4 Choosing an IoT Platform -- 9.5 Setting Up the IoT Platform 9.6 Adding Our Weather Station to the IoT Platform -- 9.7 Visualizing Data in the IoT Platform -- 9.8 Coding Our Wi-Fi Weather Station -- 9.9 Powering and Running the Weather Station -- 9.10 Viewing the Data Visualizations -- 9.11 Summary -- Chapter 10: Introduction to Machine Learning and Artificial Intelligence -- 10.1 Artificial Intelligence -- 10.2 AI/ML? -- 10.3 ML/AI and Data Science -- 10.4 Thinking Like a Machine -- 10.5 Experimental Design -- 10.6 Hardware Requirements -- 10.7 Software -- 10.8 Using the Hardware -- 10.9 Analyzing the Data -- 10.10 Comparing Humans and Machines -- 10.11 Summary -- Chapter 11: Using ML Services -- 11.1 Defining Our IoT Application -- 11.2 Choosing an IoT Service Provider -- 11.3 Setting Up Microsoft Azure: Cloud Computing Services -- 11.4 Creating an IoT Hub Using Azure Portal -- 11.5 Setting Up a Weather Prediction Model in Azure Machine Learning Studio -- 11.6 Creating a Workflow Using Azure Logic Apps -- 11.7 Setting Up the workflow -- Step 1: Sending Data from the Weather Station Instrument -- Step 2: Passing Data into the ML Service -- Step 3: Interpreting ("Parsing") Results from the ML Service ("Parse JSON") -- Step 4: Setting Up a Variable to Store the Data from the ML Service -- Step 5: Sending Data Back to the Weather Station Instrument -- 11.8 Testing the Workflow -- 11.9 Summary -- Chapter 12: Connecting an Edge Device to the IoT Application -- 12.1 Choosing the Hardware -- 12.2 The Role of the Edge Device -- 12.3 Building the Edge Device -- 12.4 Coding the Edge Device -- 12.5 Using the Edge Device -- 12.6 Improving the Edge Device -- 12.7 Peering Under the Hood of the IoT Application -- Parse JSON -- Initialize Variable -- Response -- When a HTTP Request Is Received -- 12.8 Data Analysis -- 12.9 Summary -- Chapter 13: Consolidating our Learnings -- 13.1 Am I a Data Scientist? 13.2 Becoming a Data Scientist -- 13.3 Debunking Some Myths -- 13.4 Extrapolating Learnings -- 13.5 Applying Our Knowledge to Different Builds -- 13.6 Ethical Considerations -- 13.7 Summary -- Index |
ctrlnum | (ZDB-30-PQE)EBC6273591 (ZDB-30-PAD)EBC6273591 (ZDB-89-EBL)EBL6273591 (OCoLC)1178714351 (DE-599)BVBBV048226079 |
dewey-full | 004.678 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.678 |
dewey-search | 004.678 |
dewey-sort | 14.678 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07385nmm a2200433zc 4500</leader><controlfield tag="001">BV048226079</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484257661</subfield><subfield code="9">978-1-4842-5766-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6273591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6273591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6273591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1178714351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048226079</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.678</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meitiner, Philip</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning Data Science, IoT, and AI on Single Board Computers</subfield><subfield code="b">Core Skills and Real-World Application with the BBC Micro:bit and XinaBox</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress L. P.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (323 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Table of Contents -- About the Authors -- Foreword -- Chapter 1: Introducing Data Science -- 1.1 Introducing Data Science -- 1.2 Using Temperature -- 1.3 Measuring Temperature -- 1.4 Controlling Data -- 1.5 Understanding the Tools -- 1.6 Data Quality -- 1.7 Data Capturing -- 1.8 Experimenting with Temperature -- 1.9 Analyzing Our Results -- Analysis of Extremities -- Analysis of Averages (Central Tendency) -- Random Insights -- Analysis of Data Quality -- Introspection -- 1.10 Summary -- Chapter 2: Data Science Goes Digital -- 2.1 Making It Digital -- 2.2 Measuring Temperature Digitally -- The Role of the Microprocessor -- 2.3 Building Digital Tools -- 2.4 Using the BBC micro:bit As a Thermometer -- 2.5 Coding Guidelines Used in This Book -- 2.6 Using the micro:bit Code Editors -- 2.7 Using the "No-Code" Option -- 2.8 Coding the micro:bit Thermometer -- 2.9 Comparing Analog and Digital Thermometers -- 2.10 Analysis -- Analysis of Extremities -- Analysis of Averages: "Central Tendency" -- Analysis of Data Quality -- Introspection -- 2.11 Why the micro:bit? -- 2.12 What Kit Do We Need? -- 2.13 Selecting Our Toolkit -- 2.14 Guide to Hardware Requirements -- 2.15 Summary -- Chapter 3: Experimenting with Weather -- 3.1 Introduction -- 3.2 Measuring Weather -- 3.3 Choosing the Data to Measure -- 3.4 Experimenting with Weather -- 3.5 Building Our Weather Station Tool -- 3.6 Coding Our Weather Station -- 3.7 Upgrading the Display -- 3.8 Experimental Design -- 3.9 Visualizing the Data We Collected -- 3.10 Analyzing the Data We Collected -- 3.11 Summary -- Chapter 4: Working with Large Data Sets -- 4.1 Experimental Design -- 4.2 Using the micro:bit As a File Storage Device -- 4.3 Accessing Files on the micro:bit -- 4.4 Transferring Files onto a Computer -- 4.5 Hardware Requirements -- 4.6 Storing Sensor Data in a File</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.7 Measuring How Many Data Points We Can Store -- 4.8 Replicating the Weather Station Experiment with File Storage -- 4.9 Addressing Memory Limitations -- 4.10 Expanding Data Storage Capacity -- 4.11 Summary -- Chapter 5: Introduction to Data Analysis -- 5.1 Expanding Our Analysis Tools -- 5.2 Software for Data Analysis -- 5.3 Selecting a Spreadsheet Program -- 5.4 Measuring Correlation -- 5.5 Calculating Correlation Scores -- 5.6 Understanding a Correlation Coefficient/Score -- 5.7 Calculating the Correlation Score for Weather Data -- 5.8 Using Other Analysis Functions -- 5.9 Using Visualization Tools -- 5.10 Reporting -- 5.11 Statistical Significance -- 5.12 Summary -- Chapter 6: Introducing IoT to Data Science -- 6.1 The Weakness in Our Data Science Toolkit -- 6.2 Internet of Things Overview -- 6.3 Anatomy of the Cloud -- 6.4 Transferring Data from a micro:bit -- 6.5 Wireless Communication Options for IoT -- 6.6 Transmitting Data Using a Serial Connection -- 6.7 Summary -- Chapter 7: Using Bluetooth for Data Science -- 7.1 What Is Bluetooth? -- 7.2 Why Use Bluetooth? -- 7.3 Using BLE on micro:bit -- 7.4 Building a BLE Weather Station with Bluetooth UART -- 7.5 Using the Serial Bluetooth Terminal App -- 7.6 Coding the BLE Weather Station -- 7.7 Other Options for BLE on micro:bit -- 7.8 Summary -- Chapter 8: Investigating the micro:bit Radio -- 8.1 Standards Are Important -- 8.2 Using Radio for Input/Output -- 8.3 Using Radio to Build a Network -- 8.4 Choosing MakeCode or MicroPython -- 8.5 MakeCode Radio Groups -- 8.6 Nodes and a Collector -- 8.7 Building the Nodes -- 8.8 Building the Server/Collector -- 8.9 Summary -- Chapter 9: Using Wi-Fi to Connect to the Internet -- 9.1 Defining Our IoT Weather Station -- 9.2 Building Our Wi-Fi Weather Station -- 9.3 Updating Firmware -- 9.4 Choosing an IoT Platform -- 9.5 Setting Up the IoT Platform</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.6 Adding Our Weather Station to the IoT Platform -- 9.7 Visualizing Data in the IoT Platform -- 9.8 Coding Our Wi-Fi Weather Station -- 9.9 Powering and Running the Weather Station -- 9.10 Viewing the Data Visualizations -- 9.11 Summary -- Chapter 10: Introduction to Machine Learning and Artificial Intelligence -- 10.1 Artificial Intelligence -- 10.2 AI/ML? -- 10.3 ML/AI and Data Science -- 10.4 Thinking Like a Machine -- 10.5 Experimental Design -- 10.6 Hardware Requirements -- 10.7 Software -- 10.8 Using the Hardware -- 10.9 Analyzing the Data -- 10.10 Comparing Humans and Machines -- 10.11 Summary -- Chapter 11: Using ML Services -- 11.1 Defining Our IoT Application -- 11.2 Choosing an IoT Service Provider -- 11.3 Setting Up Microsoft Azure: Cloud Computing Services -- 11.4 Creating an IoT Hub Using Azure Portal -- 11.5 Setting Up a Weather Prediction Model in Azure Machine Learning Studio -- 11.6 Creating a Workflow Using Azure Logic Apps -- 11.7 Setting Up the workflow -- Step 1: Sending Data from the Weather Station Instrument -- Step 2: Passing Data into the ML Service -- Step 3: Interpreting ("Parsing") Results from the ML Service ("Parse JSON") -- Step 4: Setting Up a Variable to Store the Data from the ML Service -- Step 5: Sending Data Back to the Weather Station Instrument -- 11.8 Testing the Workflow -- 11.9 Summary -- Chapter 12: Connecting an Edge Device to the IoT Application -- 12.1 Choosing the Hardware -- 12.2 The Role of the Edge Device -- 12.3 Building the Edge Device -- 12.4 Coding the Edge Device -- 12.5 Using the Edge Device -- 12.6 Improving the Edge Device -- 12.7 Peering Under the Hood of the IoT Application -- Parse JSON -- Initialize Variable -- Response -- When a HTTP Request Is Received -- 12.8 Data Analysis -- 12.9 Summary -- Chapter 13: Consolidating our Learnings -- 13.1 Am I a Data Scientist?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.2 Becoming a Data Scientist -- 13.3 Debunking Some Myths -- 13.4 Extrapolating Learnings -- 13.5 Applying Our Knowledge to Different Builds -- 13.6 Ethical Considerations -- 13.7 Summary -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microprocessors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seneviratne, Pradeeka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Meitiner, Philip</subfield><subfield code="t">Beginning Data Science, IoT, and AI on Single Board Computers</subfield><subfield code="d">Berkeley, CA : Apress L. P.,c2020</subfield><subfield code="z">9781484257654</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033606809</subfield></datafield></record></collection> |
id | DE-604.BV048226079 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:44Z |
indexdate | 2024-07-10T09:32:30Z |
institution | BVB |
isbn | 9781484257661 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033606809 |
oclc_num | 1178714351 |
open_access_boolean | |
physical | 1 Online-Ressource (323 Seiten) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress L. P. |
record_format | marc |
spelling | Meitiner, Philip Verfasser aut Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox Berkeley, CA Apress L. P. 2020 ©2020 1 Online-Ressource (323 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Table of Contents -- About the Authors -- Foreword -- Chapter 1: Introducing Data Science -- 1.1 Introducing Data Science -- 1.2 Using Temperature -- 1.3 Measuring Temperature -- 1.4 Controlling Data -- 1.5 Understanding the Tools -- 1.6 Data Quality -- 1.7 Data Capturing -- 1.8 Experimenting with Temperature -- 1.9 Analyzing Our Results -- Analysis of Extremities -- Analysis of Averages (Central Tendency) -- Random Insights -- Analysis of Data Quality -- Introspection -- 1.10 Summary -- Chapter 2: Data Science Goes Digital -- 2.1 Making It Digital -- 2.2 Measuring Temperature Digitally -- The Role of the Microprocessor -- 2.3 Building Digital Tools -- 2.4 Using the BBC micro:bit As a Thermometer -- 2.5 Coding Guidelines Used in This Book -- 2.6 Using the micro:bit Code Editors -- 2.7 Using the "No-Code" Option -- 2.8 Coding the micro:bit Thermometer -- 2.9 Comparing Analog and Digital Thermometers -- 2.10 Analysis -- Analysis of Extremities -- Analysis of Averages: "Central Tendency" -- Analysis of Data Quality -- Introspection -- 2.11 Why the micro:bit? -- 2.12 What Kit Do We Need? -- 2.13 Selecting Our Toolkit -- 2.14 Guide to Hardware Requirements -- 2.15 Summary -- Chapter 3: Experimenting with Weather -- 3.1 Introduction -- 3.2 Measuring Weather -- 3.3 Choosing the Data to Measure -- 3.4 Experimenting with Weather -- 3.5 Building Our Weather Station Tool -- 3.6 Coding Our Weather Station -- 3.7 Upgrading the Display -- 3.8 Experimental Design -- 3.9 Visualizing the Data We Collected -- 3.10 Analyzing the Data We Collected -- 3.11 Summary -- Chapter 4: Working with Large Data Sets -- 4.1 Experimental Design -- 4.2 Using the micro:bit As a File Storage Device -- 4.3 Accessing Files on the micro:bit -- 4.4 Transferring Files onto a Computer -- 4.5 Hardware Requirements -- 4.6 Storing Sensor Data in a File 4.7 Measuring How Many Data Points We Can Store -- 4.8 Replicating the Weather Station Experiment with File Storage -- 4.9 Addressing Memory Limitations -- 4.10 Expanding Data Storage Capacity -- 4.11 Summary -- Chapter 5: Introduction to Data Analysis -- 5.1 Expanding Our Analysis Tools -- 5.2 Software for Data Analysis -- 5.3 Selecting a Spreadsheet Program -- 5.4 Measuring Correlation -- 5.5 Calculating Correlation Scores -- 5.6 Understanding a Correlation Coefficient/Score -- 5.7 Calculating the Correlation Score for Weather Data -- 5.8 Using Other Analysis Functions -- 5.9 Using Visualization Tools -- 5.10 Reporting -- 5.11 Statistical Significance -- 5.12 Summary -- Chapter 6: Introducing IoT to Data Science -- 6.1 The Weakness in Our Data Science Toolkit -- 6.2 Internet of Things Overview -- 6.3 Anatomy of the Cloud -- 6.4 Transferring Data from a micro:bit -- 6.5 Wireless Communication Options for IoT -- 6.6 Transmitting Data Using a Serial Connection -- 6.7 Summary -- Chapter 7: Using Bluetooth for Data Science -- 7.1 What Is Bluetooth? -- 7.2 Why Use Bluetooth? -- 7.3 Using BLE on micro:bit -- 7.4 Building a BLE Weather Station with Bluetooth UART -- 7.5 Using the Serial Bluetooth Terminal App -- 7.6 Coding the BLE Weather Station -- 7.7 Other Options for BLE on micro:bit -- 7.8 Summary -- Chapter 8: Investigating the micro:bit Radio -- 8.1 Standards Are Important -- 8.2 Using Radio for Input/Output -- 8.3 Using Radio to Build a Network -- 8.4 Choosing MakeCode or MicroPython -- 8.5 MakeCode Radio Groups -- 8.6 Nodes and a Collector -- 8.7 Building the Nodes -- 8.8 Building the Server/Collector -- 8.9 Summary -- Chapter 9: Using Wi-Fi to Connect to the Internet -- 9.1 Defining Our IoT Weather Station -- 9.2 Building Our Wi-Fi Weather Station -- 9.3 Updating Firmware -- 9.4 Choosing an IoT Platform -- 9.5 Setting Up the IoT Platform 9.6 Adding Our Weather Station to the IoT Platform -- 9.7 Visualizing Data in the IoT Platform -- 9.8 Coding Our Wi-Fi Weather Station -- 9.9 Powering and Running the Weather Station -- 9.10 Viewing the Data Visualizations -- 9.11 Summary -- Chapter 10: Introduction to Machine Learning and Artificial Intelligence -- 10.1 Artificial Intelligence -- 10.2 AI/ML? -- 10.3 ML/AI and Data Science -- 10.4 Thinking Like a Machine -- 10.5 Experimental Design -- 10.6 Hardware Requirements -- 10.7 Software -- 10.8 Using the Hardware -- 10.9 Analyzing the Data -- 10.10 Comparing Humans and Machines -- 10.11 Summary -- Chapter 11: Using ML Services -- 11.1 Defining Our IoT Application -- 11.2 Choosing an IoT Service Provider -- 11.3 Setting Up Microsoft Azure: Cloud Computing Services -- 11.4 Creating an IoT Hub Using Azure Portal -- 11.5 Setting Up a Weather Prediction Model in Azure Machine Learning Studio -- 11.6 Creating a Workflow Using Azure Logic Apps -- 11.7 Setting Up the workflow -- Step 1: Sending Data from the Weather Station Instrument -- Step 2: Passing Data into the ML Service -- Step 3: Interpreting ("Parsing") Results from the ML Service ("Parse JSON") -- Step 4: Setting Up a Variable to Store the Data from the ML Service -- Step 5: Sending Data Back to the Weather Station Instrument -- 11.8 Testing the Workflow -- 11.9 Summary -- Chapter 12: Connecting an Edge Device to the IoT Application -- 12.1 Choosing the Hardware -- 12.2 The Role of the Edge Device -- 12.3 Building the Edge Device -- 12.4 Coding the Edge Device -- 12.5 Using the Edge Device -- 12.6 Improving the Edge Device -- 12.7 Peering Under the Hood of the IoT Application -- Parse JSON -- Initialize Variable -- Response -- When a HTTP Request Is Received -- 12.8 Data Analysis -- 12.9 Summary -- Chapter 13: Consolidating our Learnings -- 13.1 Am I a Data Scientist? 13.2 Becoming a Data Scientist -- 13.3 Debunking Some Myths -- 13.4 Extrapolating Learnings -- 13.5 Applying Our Knowledge to Different Builds -- 13.6 Ethical Considerations -- 13.7 Summary -- Index Internet of things Artificial intelligence Microprocessors Seneviratne, Pradeeka Sonstige oth Erscheint auch als Druck-Ausgabe Meitiner, Philip Beginning Data Science, IoT, and AI on Single Board Computers Berkeley, CA : Apress L. P.,c2020 9781484257654 |
spellingShingle | Meitiner, Philip Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox Intro -- Table of Contents -- About the Authors -- Foreword -- Chapter 1: Introducing Data Science -- 1.1 Introducing Data Science -- 1.2 Using Temperature -- 1.3 Measuring Temperature -- 1.4 Controlling Data -- 1.5 Understanding the Tools -- 1.6 Data Quality -- 1.7 Data Capturing -- 1.8 Experimenting with Temperature -- 1.9 Analyzing Our Results -- Analysis of Extremities -- Analysis of Averages (Central Tendency) -- Random Insights -- Analysis of Data Quality -- Introspection -- 1.10 Summary -- Chapter 2: Data Science Goes Digital -- 2.1 Making It Digital -- 2.2 Measuring Temperature Digitally -- The Role of the Microprocessor -- 2.3 Building Digital Tools -- 2.4 Using the BBC micro:bit As a Thermometer -- 2.5 Coding Guidelines Used in This Book -- 2.6 Using the micro:bit Code Editors -- 2.7 Using the "No-Code" Option -- 2.8 Coding the micro:bit Thermometer -- 2.9 Comparing Analog and Digital Thermometers -- 2.10 Analysis -- Analysis of Extremities -- Analysis of Averages: "Central Tendency" -- Analysis of Data Quality -- Introspection -- 2.11 Why the micro:bit? -- 2.12 What Kit Do We Need? -- 2.13 Selecting Our Toolkit -- 2.14 Guide to Hardware Requirements -- 2.15 Summary -- Chapter 3: Experimenting with Weather -- 3.1 Introduction -- 3.2 Measuring Weather -- 3.3 Choosing the Data to Measure -- 3.4 Experimenting with Weather -- 3.5 Building Our Weather Station Tool -- 3.6 Coding Our Weather Station -- 3.7 Upgrading the Display -- 3.8 Experimental Design -- 3.9 Visualizing the Data We Collected -- 3.10 Analyzing the Data We Collected -- 3.11 Summary -- Chapter 4: Working with Large Data Sets -- 4.1 Experimental Design -- 4.2 Using the micro:bit As a File Storage Device -- 4.3 Accessing Files on the micro:bit -- 4.4 Transferring Files onto a Computer -- 4.5 Hardware Requirements -- 4.6 Storing Sensor Data in a File 4.7 Measuring How Many Data Points We Can Store -- 4.8 Replicating the Weather Station Experiment with File Storage -- 4.9 Addressing Memory Limitations -- 4.10 Expanding Data Storage Capacity -- 4.11 Summary -- Chapter 5: Introduction to Data Analysis -- 5.1 Expanding Our Analysis Tools -- 5.2 Software for Data Analysis -- 5.3 Selecting a Spreadsheet Program -- 5.4 Measuring Correlation -- 5.5 Calculating Correlation Scores -- 5.6 Understanding a Correlation Coefficient/Score -- 5.7 Calculating the Correlation Score for Weather Data -- 5.8 Using Other Analysis Functions -- 5.9 Using Visualization Tools -- 5.10 Reporting -- 5.11 Statistical Significance -- 5.12 Summary -- Chapter 6: Introducing IoT to Data Science -- 6.1 The Weakness in Our Data Science Toolkit -- 6.2 Internet of Things Overview -- 6.3 Anatomy of the Cloud -- 6.4 Transferring Data from a micro:bit -- 6.5 Wireless Communication Options for IoT -- 6.6 Transmitting Data Using a Serial Connection -- 6.7 Summary -- Chapter 7: Using Bluetooth for Data Science -- 7.1 What Is Bluetooth? -- 7.2 Why Use Bluetooth? -- 7.3 Using BLE on micro:bit -- 7.4 Building a BLE Weather Station with Bluetooth UART -- 7.5 Using the Serial Bluetooth Terminal App -- 7.6 Coding the BLE Weather Station -- 7.7 Other Options for BLE on micro:bit -- 7.8 Summary -- Chapter 8: Investigating the micro:bit Radio -- 8.1 Standards Are Important -- 8.2 Using Radio for Input/Output -- 8.3 Using Radio to Build a Network -- 8.4 Choosing MakeCode or MicroPython -- 8.5 MakeCode Radio Groups -- 8.6 Nodes and a Collector -- 8.7 Building the Nodes -- 8.8 Building the Server/Collector -- 8.9 Summary -- Chapter 9: Using Wi-Fi to Connect to the Internet -- 9.1 Defining Our IoT Weather Station -- 9.2 Building Our Wi-Fi Weather Station -- 9.3 Updating Firmware -- 9.4 Choosing an IoT Platform -- 9.5 Setting Up the IoT Platform 9.6 Adding Our Weather Station to the IoT Platform -- 9.7 Visualizing Data in the IoT Platform -- 9.8 Coding Our Wi-Fi Weather Station -- 9.9 Powering and Running the Weather Station -- 9.10 Viewing the Data Visualizations -- 9.11 Summary -- Chapter 10: Introduction to Machine Learning and Artificial Intelligence -- 10.1 Artificial Intelligence -- 10.2 AI/ML? -- 10.3 ML/AI and Data Science -- 10.4 Thinking Like a Machine -- 10.5 Experimental Design -- 10.6 Hardware Requirements -- 10.7 Software -- 10.8 Using the Hardware -- 10.9 Analyzing the Data -- 10.10 Comparing Humans and Machines -- 10.11 Summary -- Chapter 11: Using ML Services -- 11.1 Defining Our IoT Application -- 11.2 Choosing an IoT Service Provider -- 11.3 Setting Up Microsoft Azure: Cloud Computing Services -- 11.4 Creating an IoT Hub Using Azure Portal -- 11.5 Setting Up a Weather Prediction Model in Azure Machine Learning Studio -- 11.6 Creating a Workflow Using Azure Logic Apps -- 11.7 Setting Up the workflow -- Step 1: Sending Data from the Weather Station Instrument -- Step 2: Passing Data into the ML Service -- Step 3: Interpreting ("Parsing") Results from the ML Service ("Parse JSON") -- Step 4: Setting Up a Variable to Store the Data from the ML Service -- Step 5: Sending Data Back to the Weather Station Instrument -- 11.8 Testing the Workflow -- 11.9 Summary -- Chapter 12: Connecting an Edge Device to the IoT Application -- 12.1 Choosing the Hardware -- 12.2 The Role of the Edge Device -- 12.3 Building the Edge Device -- 12.4 Coding the Edge Device -- 12.5 Using the Edge Device -- 12.6 Improving the Edge Device -- 12.7 Peering Under the Hood of the IoT Application -- Parse JSON -- Initialize Variable -- Response -- When a HTTP Request Is Received -- 12.8 Data Analysis -- 12.9 Summary -- Chapter 13: Consolidating our Learnings -- 13.1 Am I a Data Scientist? 13.2 Becoming a Data Scientist -- 13.3 Debunking Some Myths -- 13.4 Extrapolating Learnings -- 13.5 Applying Our Knowledge to Different Builds -- 13.6 Ethical Considerations -- 13.7 Summary -- Index Internet of things Artificial intelligence Microprocessors |
title | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_auth | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_exact_search | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_exact_search_txtP | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_full | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_fullStr | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_full_unstemmed | Beginning Data Science, IoT, and AI on Single Board Computers Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
title_short | Beginning Data Science, IoT, and AI on Single Board Computers |
title_sort | beginning data science iot and ai on single board computers core skills and real world application with the bbc micro bit and xinabox |
title_sub | Core Skills and Real-World Application with the BBC Micro:bit and XinaBox |
topic | Internet of things Artificial intelligence Microprocessors |
topic_facet | Internet of things Artificial intelligence Microprocessors |
work_keys_str_mv | AT meitinerphilip beginningdatascienceiotandaionsingleboardcomputerscoreskillsandrealworldapplicationwiththebbcmicrobitandxinabox AT seneviratnepradeeka beginningdatascienceiotandaionsingleboardcomputerscoreskillsandrealworldapplicationwiththebbcmicrobitandxinabox |