Advanced Computational Methods for Oncological Image Analysis:
[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. T...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
MDPI
2021
|
Online-Zugang: | kostenfrei kostenfrei |
Zusammenfassung: | [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.] |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783036525556 |
DOI: | 10.3390/books978-3-0365-2555-6 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048225816 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2021 xx o|||| 00||| eng d | ||
020 | |a 9783036525556 |c Online, PDF |9 978-3-0365-2555-6 | ||
024 | 7 | |a 10.3390/books978-3-0365-2555-6 |2 doi | |
035 | |a (OCoLC)1319632632 | ||
035 | |a (DE-599)BVBBV048225816 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-210 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1028 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-861 |a DE-863 |a DE-862 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
245 | 1 | 0 | |a Advanced Computational Methods for Oncological Image Analysis |c Edited by: Leonardo Rundo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna and Changhee Han |
264 | 1 | |a Basel |b MDPI |c 2021 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.] | ||
700 | 1 | |a Rundo, Leonardo |4 edt | |
700 | 1 | |a Militello, Carmelo |4 edt | |
700 | 1 | |a Conti, Vincenzo |4 edt | |
700 | 1 | |a Zaccagna, Fulvio |4 edt | |
700 | 1 | |a Han, Changhee |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-3-0365-2554-9 |
856 | 4 | 0 | |u https://directory.doabooks.org/handle/20.500.12854/77043 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.3390/books978-3-0365-2555-6 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-94-OAB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033606548 |
Datensatz im Suchindex
_version_ | 1824556018763300865 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Rundo, Leonardo Militello, Carmelo Conti, Vincenzo Zaccagna, Fulvio Han, Changhee |
author2_role | edt edt edt edt edt |
author2_variant | l r lr c m cm v c vc f z fz c h ch |
author_facet | Rundo, Leonardo Militello, Carmelo Conti, Vincenzo Zaccagna, Fulvio Han, Changhee |
building | Verbundindex |
bvnumber | BV048225816 |
collection | ZDB-94-OAB |
ctrlnum | (OCoLC)1319632632 (DE-599)BVBBV048225816 |
doi_str_mv | 10.3390/books978-3-0365-2555-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048225816</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036525556</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-3-0365-2555-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/books978-3-0365-2555-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1319632632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048225816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced Computational Methods for Oncological Image Analysis</subfield><subfield code="c">Edited by: Leonardo Rundo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna and Changhee Han</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">MDPI</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.]</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rundo, Leonardo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Militello, Carmelo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Conti, Vincenzo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaccagna, Fulvio</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Changhee</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-0365-2554-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://directory.doabooks.org/handle/20.500.12854/77043</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/books978-3-0365-2555-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-94-OAB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033606548</subfield></datafield></record></collection> |
id | DE-604.BV048225816 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:41Z |
indexdate | 2025-02-20T07:16:53Z |
institution | BVB |
isbn | 9783036525556 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033606548 |
oclc_num | 1319632632 |
open_access_boolean | 1 |
owner | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-94-OAB |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | MDPI |
record_format | marc |
spellingShingle | Advanced Computational Methods for Oncological Image Analysis |
title | Advanced Computational Methods for Oncological Image Analysis |
title_auth | Advanced Computational Methods for Oncological Image Analysis |
title_exact_search | Advanced Computational Methods for Oncological Image Analysis |
title_exact_search_txtP | Advanced Computational Methods for Oncological Image Analysis |
title_full | Advanced Computational Methods for Oncological Image Analysis Edited by: Leonardo Rundo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna and Changhee Han |
title_fullStr | Advanced Computational Methods for Oncological Image Analysis Edited by: Leonardo Rundo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna and Changhee Han |
title_full_unstemmed | Advanced Computational Methods for Oncological Image Analysis Edited by: Leonardo Rundo, Carmelo Militello, Vincenzo Conti, Fulvio Zaccagna and Changhee Han |
title_short | Advanced Computational Methods for Oncological Image Analysis |
title_sort | advanced computational methods for oncological image analysis |
url | https://directory.doabooks.org/handle/20.500.12854/77043 https://doi.org/10.3390/books978-3-0365-2555-6 |
work_keys_str_mv | AT rundoleonardo advancedcomputationalmethodsforoncologicalimageanalysis AT militellocarmelo advancedcomputationalmethodsforoncologicalimageanalysis AT contivincenzo advancedcomputationalmethodsforoncologicalimageanalysis AT zaccagnafulvio advancedcomputationalmethodsforoncologicalimageanalysis AT hanchanghee advancedcomputationalmethodsforoncologicalimageanalysis |