Optimization under Stochastic Uncertainty: Methods, Control and Random Search Methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | International Series in Operations Research and Management Science Ser.
v.296 |
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (390 Seiten) |
ISBN: | 9783030556624 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048224486 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030556624 |9 978-3-030-55662-4 | ||
035 | |a (ZDB-30-PQE)EBC6388677 | ||
035 | |a (ZDB-30-PAD)EBC6388677 | ||
035 | |a (ZDB-89-EBL)EBL6388677 | ||
035 | |a (OCoLC)1206371382 | ||
035 | |a (DE-599)BVBBV048224486 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.4034 | |
084 | |a QH 424 |0 (DE-625)141578: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Marti, Kurt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization under Stochastic Uncertainty |b Methods, Control and Random Search Methods |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (390 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Series in Operations Research and Management Science Ser. |v v.296 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Contents -- Symbols and Abbreviations -- Part I Stochastic Optimization Methods -- 1 Optimal Control Under Stochastic Uncertainty -- 1.1 Stochastic Control Systems -- 1.1.1 Differential and Integral Equations Under Stochastic Uncertainty -- 1.1.1.1 Parametric Representation of the Differential/Integral Equation Under Stochastic Uncertainty -- 1.1.2 Objective Function -- 1.1.2.1 Optimal Control Under Stochastic Uncertainty -- 1.2 Control Laws -- 1.3 Computation of Expectations by Means of Taylor Expansions -- 1.3.1 Complete Taylor Expansion -- 1.3.2 Inner or Partial Taylor Expansion -- 1.4 Taylor Approximation of Control Problems Under Stochastic Uncertainty: General Procedure -- 1.5 Control Problems with Linear and Sublinear Cost Functions -- 1.6 Stochastic Optimal Open-Loop Feedback Control of Tracking Systems -- 1.6.1 Approximation of the Expected Costs: Expansions of 1st Order -- 1.6.2 Approximate Computation of the Fundamental Matrix -- References -- 2 Stochastic Optimization of Regulators -- 2.1 Introduction -- 2.2 Regulator Design Under Stochastic Uncertainty -- 2.3 Optimal Feedback Functions Under Stochastic Uncertainty -- 2.3.1 Quadratic Cost Functions -- 2.3.1.1 Computation of the Expectation by Taylor Expansion -- 2.3.1.2 Approximation of the Expectation of the Total Cost Function -- 2.4 Calculation of the Tracking Error Rates (Sensitivities) -- 2.4.1 Partial Derivative with Respect to pD -- 2.4.2 Partial Derivative with Respect to q0 -- 2.4.3 Partial Derivative with Respect to 0 -- 2.4.4 Partial Derivative with Respect to e0 -- 2.4.4.1 Partial Derivative with Respect to eq -- 2.5 The Approximate Regulator Optimization Problem -- 2.6 Active Structural Control Under Stochastic Uncertainty -- 2.6.1 Example -- References -- 3 Optimal Open-Loop Control of Dynamic Systems Under Stochastic Uncertainty | |
505 | 8 | |a 3.1 Optimal Control Problems Under Stochastic Uncertainty -- 3.1.1 Computation of the Expectation of the Cost Functions L, G -- 3.2 Solution of the Substitute Control Problem -- 3.3 More General Dynamic Control Systems -- Reference -- 4 Construction of Feedback Control by Means of Homotopy Methods -- References -- 5 Constructions of Limit State Functions -- 5.1 Introduction -- 5.2 Optimization-Based Construction of Limit State Functions -- 5.3 The (Limit) State Function s -- 5.3.1 Characterization of Safe States -- 5.4 Computation of the State Function for Concrete Cases -- 5.4.1 Mechanical Structures Under Stochastic Uncertainty -- 5.4.1.1 Trusses -- 5.4.1.2 Elastic-Plastic Mechanical Structures -- 5.4.2 Linear-Quadratic Problems with Scalar Response Function -- 5.4.3 Approximation of the General Operating Condition -- 5.4.4 Two-Sided Constraints for the Response Functions -- 5.5 Systems/Structures with Parameter-Dependent States -- 5.5.1 Dynamic Control Systems -- 5.5.2 Variational Problems -- 5.5.3 Example to Systems with Control and Variational Problems -- 5.5.3.1 Control Problems -- 5.5.3.2 Variational Problems -- 5.5.3.3 Transformation of Control Problems into Variational Problems -- 5.5.4 Discretization of Control Systems -- 5.5.4.1 Control Problems with Quadratic Objective Functions -- 5.5.4.2 Tracking Problems -- 5.5.4.3 Endpoint Control -- 5.5.4.4 Control Problems with Sublinear Objective Functions -- 5.5.5 Reliability-Based Optimal Control -- 5.5.5.1 Computation of the Probability of Survival -- 5.5.5.2 Tracking Problems with Quadratic Cost Function -- 5.5.5.3 Endpoint Control in Case of Sublinear Cost Function -- 5.5.5.4 Further Lower Bound for psD -- 5.5.5.5 Reliability Computation by Using Copulas -- 5.5.5.6 Approximations of PoS -- References | |
505 | 8 | |a Part II Optimization by Stochastic Methods: Foundations and Optimal Control/Acceleration of Random Search Methods (RSM) -- 6 Random Search Procedures for Global Optimization -- 6.1 Introduction -- 6.2 The Convergence of the Basic Random Search Procedure -- 6.2.1 Discrete Optimization Problems -- 6.3 Adaptive Random Search Methods -- 6.3.1 Infinite-Stage Search Processes -- 6.4 Convex Problems -- References -- 7 Controlled Random Search Under Uncertainty -- 7.1 The Controlled (or Adaptive) Random Search Method -- 7.1.1 The Convergence of the Controlled Random Search Procedure -- 7.1.2 A Stopping Rule -- 7.2 Computation of the Conditional Distribution of F Given the Process History: Information Processing -- References -- 8 Controlled Random Search Procedures for Global Optimization -- 8.1 Introduction -- 8.2 Convergence of the Random Search Procedure -- 8.3 Controlled Random Search Methods -- 8.4 Computation of Optimal Controls -- 8.5 Convergence Rates of Controlled Random Search Procedures -- 8.6 Numerical Realizations of Optimal Control Laws -- References -- Part III Random Search Methods (RSM): Convergence and Convergence Rates -- 9 Mathematical Model of Random Search Methods and Elementary Properties -- References -- 10 Special Random Search Methods -- 10.1 R-S-M with Absolutely Continuous Mutation Sequence -- 10.2 Random Direction Methods -- 10.3 Relationships Between Random Direction Methods and Methods with an Absolutely Continuous Mutation Sequence -- References -- 11 Accessibility Theorems -- References -- 12 Convergence Theorems -- 12.1 Convergence of Random Search Methods with an Absolutely Continuous Mutation Sequence -- 12.2 Convergence of Random Direction Methods -- References -- 13 Convergence of Stationary Random Search Methods for Positive Success Probability -- Reference -- 14 Random Search Methods of Convergence Order O(n-α) | |
505 | 8 | |a References -- 15 Random Search Methods with a Linear Rate of Convergence -- 15.1 Methods with a Rate of Convergence that Is at Least Linear -- 15.2 Methods with a Rate of Convergence that Is at Most Linear -- 15.3 Linear Convergence for Positive Probability of Success -- References -- 16 Success/Failure-Driven Random Direction Procedures -- References -- 17 Hybrid Methods -- References -- Part IV Optimization Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18 Solving Optimization Problems Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18.1 Introduction -- 18.2 Convergence of the Search Process (Xt) -- 18.3 Estimation of the Minimum, Maximum Entry, Leaving Probability, Resp., αt, rt -- References -- A Properties of the Uniform Distribution on the Unit Sphere -- B Analytical Tools -- C Probabilistic Tools -- Index | |
650 | 4 | |a Operations research | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Optimierung |0 (DE-588)4057625-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Optimierung |0 (DE-588)4057625-5 |D s |
689 | 0 | 1 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Marti, Kurt |t Optimization under Stochastic Uncertainty |d Cham : Springer International Publishing AG,c2020 |z 9783030556617 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033605219 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6388677 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184006635290624 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Marti, Kurt |
author_facet | Marti, Kurt |
author_role | aut |
author_sort | Marti, Kurt |
author_variant | k m km |
building | Verbundindex |
bvnumber | BV048224486 |
classification_rvk | QH 424 SK 820 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- Symbols and Abbreviations -- Part I Stochastic Optimization Methods -- 1 Optimal Control Under Stochastic Uncertainty -- 1.1 Stochastic Control Systems -- 1.1.1 Differential and Integral Equations Under Stochastic Uncertainty -- 1.1.1.1 Parametric Representation of the Differential/Integral Equation Under Stochastic Uncertainty -- 1.1.2 Objective Function -- 1.1.2.1 Optimal Control Under Stochastic Uncertainty -- 1.2 Control Laws -- 1.3 Computation of Expectations by Means of Taylor Expansions -- 1.3.1 Complete Taylor Expansion -- 1.3.2 Inner or Partial Taylor Expansion -- 1.4 Taylor Approximation of Control Problems Under Stochastic Uncertainty: General Procedure -- 1.5 Control Problems with Linear and Sublinear Cost Functions -- 1.6 Stochastic Optimal Open-Loop Feedback Control of Tracking Systems -- 1.6.1 Approximation of the Expected Costs: Expansions of 1st Order -- 1.6.2 Approximate Computation of the Fundamental Matrix -- References -- 2 Stochastic Optimization of Regulators -- 2.1 Introduction -- 2.2 Regulator Design Under Stochastic Uncertainty -- 2.3 Optimal Feedback Functions Under Stochastic Uncertainty -- 2.3.1 Quadratic Cost Functions -- 2.3.1.1 Computation of the Expectation by Taylor Expansion -- 2.3.1.2 Approximation of the Expectation of the Total Cost Function -- 2.4 Calculation of the Tracking Error Rates (Sensitivities) -- 2.4.1 Partial Derivative with Respect to pD -- 2.4.2 Partial Derivative with Respect to q0 -- 2.4.3 Partial Derivative with Respect to 0 -- 2.4.4 Partial Derivative with Respect to e0 -- 2.4.4.1 Partial Derivative with Respect to eq -- 2.5 The Approximate Regulator Optimization Problem -- 2.6 Active Structural Control Under Stochastic Uncertainty -- 2.6.1 Example -- References -- 3 Optimal Open-Loop Control of Dynamic Systems Under Stochastic Uncertainty 3.1 Optimal Control Problems Under Stochastic Uncertainty -- 3.1.1 Computation of the Expectation of the Cost Functions L, G -- 3.2 Solution of the Substitute Control Problem -- 3.3 More General Dynamic Control Systems -- Reference -- 4 Construction of Feedback Control by Means of Homotopy Methods -- References -- 5 Constructions of Limit State Functions -- 5.1 Introduction -- 5.2 Optimization-Based Construction of Limit State Functions -- 5.3 The (Limit) State Function s -- 5.3.1 Characterization of Safe States -- 5.4 Computation of the State Function for Concrete Cases -- 5.4.1 Mechanical Structures Under Stochastic Uncertainty -- 5.4.1.1 Trusses -- 5.4.1.2 Elastic-Plastic Mechanical Structures -- 5.4.2 Linear-Quadratic Problems with Scalar Response Function -- 5.4.3 Approximation of the General Operating Condition -- 5.4.4 Two-Sided Constraints for the Response Functions -- 5.5 Systems/Structures with Parameter-Dependent States -- 5.5.1 Dynamic Control Systems -- 5.5.2 Variational Problems -- 5.5.3 Example to Systems with Control and Variational Problems -- 5.5.3.1 Control Problems -- 5.5.3.2 Variational Problems -- 5.5.3.3 Transformation of Control Problems into Variational Problems -- 5.5.4 Discretization of Control Systems -- 5.5.4.1 Control Problems with Quadratic Objective Functions -- 5.5.4.2 Tracking Problems -- 5.5.4.3 Endpoint Control -- 5.5.4.4 Control Problems with Sublinear Objective Functions -- 5.5.5 Reliability-Based Optimal Control -- 5.5.5.1 Computation of the Probability of Survival -- 5.5.5.2 Tracking Problems with Quadratic Cost Function -- 5.5.5.3 Endpoint Control in Case of Sublinear Cost Function -- 5.5.5.4 Further Lower Bound for psD -- 5.5.5.5 Reliability Computation by Using Copulas -- 5.5.5.6 Approximations of PoS -- References Part II Optimization by Stochastic Methods: Foundations and Optimal Control/Acceleration of Random Search Methods (RSM) -- 6 Random Search Procedures for Global Optimization -- 6.1 Introduction -- 6.2 The Convergence of the Basic Random Search Procedure -- 6.2.1 Discrete Optimization Problems -- 6.3 Adaptive Random Search Methods -- 6.3.1 Infinite-Stage Search Processes -- 6.4 Convex Problems -- References -- 7 Controlled Random Search Under Uncertainty -- 7.1 The Controlled (or Adaptive) Random Search Method -- 7.1.1 The Convergence of the Controlled Random Search Procedure -- 7.1.2 A Stopping Rule -- 7.2 Computation of the Conditional Distribution of F Given the Process History: Information Processing -- References -- 8 Controlled Random Search Procedures for Global Optimization -- 8.1 Introduction -- 8.2 Convergence of the Random Search Procedure -- 8.3 Controlled Random Search Methods -- 8.4 Computation of Optimal Controls -- 8.5 Convergence Rates of Controlled Random Search Procedures -- 8.6 Numerical Realizations of Optimal Control Laws -- References -- Part III Random Search Methods (RSM): Convergence and Convergence Rates -- 9 Mathematical Model of Random Search Methods and Elementary Properties -- References -- 10 Special Random Search Methods -- 10.1 R-S-M with Absolutely Continuous Mutation Sequence -- 10.2 Random Direction Methods -- 10.3 Relationships Between Random Direction Methods and Methods with an Absolutely Continuous Mutation Sequence -- References -- 11 Accessibility Theorems -- References -- 12 Convergence Theorems -- 12.1 Convergence of Random Search Methods with an Absolutely Continuous Mutation Sequence -- 12.2 Convergence of Random Direction Methods -- References -- 13 Convergence of Stationary Random Search Methods for Positive Success Probability -- Reference -- 14 Random Search Methods of Convergence Order O(n-α) References -- 15 Random Search Methods with a Linear Rate of Convergence -- 15.1 Methods with a Rate of Convergence that Is at Least Linear -- 15.2 Methods with a Rate of Convergence that Is at Most Linear -- 15.3 Linear Convergence for Positive Probability of Success -- References -- 16 Success/Failure-Driven Random Direction Procedures -- References -- 17 Hybrid Methods -- References -- Part IV Optimization Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18 Solving Optimization Problems Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18.1 Introduction -- 18.2 Convergence of the Search Process (Xt) -- 18.3 Estimation of the Minimum, Maximum Entry, Leaving Probability, Resp., αt, rt -- References -- A Properties of the Uniform Distribution on the Unit Sphere -- B Analytical Tools -- C Probabilistic Tools -- Index |
ctrlnum | (ZDB-30-PQE)EBC6388677 (ZDB-30-PAD)EBC6388677 (ZDB-89-EBL)EBL6388677 (OCoLC)1206371382 (DE-599)BVBBV048224486 |
dewey-full | 658.4034 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4034 |
dewey-search | 658.4034 |
dewey-sort | 3658.4034 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08378nmm a2200529zcb4500</leader><controlfield tag="001">BV048224486</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030556624</subfield><subfield code="9">978-3-030-55662-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6388677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6388677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6388677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1206371382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048224486</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4034</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 424</subfield><subfield code="0">(DE-625)141578:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marti, Kurt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization under Stochastic Uncertainty</subfield><subfield code="b">Methods, Control and Random Search Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (390 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Series in Operations Research and Management Science Ser.</subfield><subfield code="v">v.296</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Symbols and Abbreviations -- Part I Stochastic Optimization Methods -- 1 Optimal Control Under Stochastic Uncertainty -- 1.1 Stochastic Control Systems -- 1.1.1 Differential and Integral Equations Under Stochastic Uncertainty -- 1.1.1.1 Parametric Representation of the Differential/Integral Equation Under Stochastic Uncertainty -- 1.1.2 Objective Function -- 1.1.2.1 Optimal Control Under Stochastic Uncertainty -- 1.2 Control Laws -- 1.3 Computation of Expectations by Means of Taylor Expansions -- 1.3.1 Complete Taylor Expansion -- 1.3.2 Inner or Partial Taylor Expansion -- 1.4 Taylor Approximation of Control Problems Under Stochastic Uncertainty: General Procedure -- 1.5 Control Problems with Linear and Sublinear Cost Functions -- 1.6 Stochastic Optimal Open-Loop Feedback Control of Tracking Systems -- 1.6.1 Approximation of the Expected Costs: Expansions of 1st Order -- 1.6.2 Approximate Computation of the Fundamental Matrix -- References -- 2 Stochastic Optimization of Regulators -- 2.1 Introduction -- 2.2 Regulator Design Under Stochastic Uncertainty -- 2.3 Optimal Feedback Functions Under Stochastic Uncertainty -- 2.3.1 Quadratic Cost Functions -- 2.3.1.1 Computation of the Expectation by Taylor Expansion -- 2.3.1.2 Approximation of the Expectation of the Total Cost Function -- 2.4 Calculation of the Tracking Error Rates (Sensitivities) -- 2.4.1 Partial Derivative with Respect to pD -- 2.4.2 Partial Derivative with Respect to q0 -- 2.4.3 Partial Derivative with Respect to 0 -- 2.4.4 Partial Derivative with Respect to e0 -- 2.4.4.1 Partial Derivative with Respect to eq -- 2.5 The Approximate Regulator Optimization Problem -- 2.6 Active Structural Control Under Stochastic Uncertainty -- 2.6.1 Example -- References -- 3 Optimal Open-Loop Control of Dynamic Systems Under Stochastic Uncertainty</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1 Optimal Control Problems Under Stochastic Uncertainty -- 3.1.1 Computation of the Expectation of the Cost Functions L, G -- 3.2 Solution of the Substitute Control Problem -- 3.3 More General Dynamic Control Systems -- Reference -- 4 Construction of Feedback Control by Means of Homotopy Methods -- References -- 5 Constructions of Limit State Functions -- 5.1 Introduction -- 5.2 Optimization-Based Construction of Limit State Functions -- 5.3 The (Limit) State Function s -- 5.3.1 Characterization of Safe States -- 5.4 Computation of the State Function for Concrete Cases -- 5.4.1 Mechanical Structures Under Stochastic Uncertainty -- 5.4.1.1 Trusses -- 5.4.1.2 Elastic-Plastic Mechanical Structures -- 5.4.2 Linear-Quadratic Problems with Scalar Response Function -- 5.4.3 Approximation of the General Operating Condition -- 5.4.4 Two-Sided Constraints for the Response Functions -- 5.5 Systems/Structures with Parameter-Dependent States -- 5.5.1 Dynamic Control Systems -- 5.5.2 Variational Problems -- 5.5.3 Example to Systems with Control and Variational Problems -- 5.5.3.1 Control Problems -- 5.5.3.2 Variational Problems -- 5.5.3.3 Transformation of Control Problems into Variational Problems -- 5.5.4 Discretization of Control Systems -- 5.5.4.1 Control Problems with Quadratic Objective Functions -- 5.5.4.2 Tracking Problems -- 5.5.4.3 Endpoint Control -- 5.5.4.4 Control Problems with Sublinear Objective Functions -- 5.5.5 Reliability-Based Optimal Control -- 5.5.5.1 Computation of the Probability of Survival -- 5.5.5.2 Tracking Problems with Quadratic Cost Function -- 5.5.5.3 Endpoint Control in Case of Sublinear Cost Function -- 5.5.5.4 Further Lower Bound for psD -- 5.5.5.5 Reliability Computation by Using Copulas -- 5.5.5.6 Approximations of PoS -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part II Optimization by Stochastic Methods: Foundations and Optimal Control/Acceleration of Random Search Methods (RSM) -- 6 Random Search Procedures for Global Optimization -- 6.1 Introduction -- 6.2 The Convergence of the Basic Random Search Procedure -- 6.2.1 Discrete Optimization Problems -- 6.3 Adaptive Random Search Methods -- 6.3.1 Infinite-Stage Search Processes -- 6.4 Convex Problems -- References -- 7 Controlled Random Search Under Uncertainty -- 7.1 The Controlled (or Adaptive) Random Search Method -- 7.1.1 The Convergence of the Controlled Random Search Procedure -- 7.1.2 A Stopping Rule -- 7.2 Computation of the Conditional Distribution of F Given the Process History: Information Processing -- References -- 8 Controlled Random Search Procedures for Global Optimization -- 8.1 Introduction -- 8.2 Convergence of the Random Search Procedure -- 8.3 Controlled Random Search Methods -- 8.4 Computation of Optimal Controls -- 8.5 Convergence Rates of Controlled Random Search Procedures -- 8.6 Numerical Realizations of Optimal Control Laws -- References -- Part III Random Search Methods (RSM): Convergence and Convergence Rates -- 9 Mathematical Model of Random Search Methods and Elementary Properties -- References -- 10 Special Random Search Methods -- 10.1 R-S-M with Absolutely Continuous Mutation Sequence -- 10.2 Random Direction Methods -- 10.3 Relationships Between Random Direction Methods and Methods with an Absolutely Continuous Mutation Sequence -- References -- 11 Accessibility Theorems -- References -- 12 Convergence Theorems -- 12.1 Convergence of Random Search Methods with an Absolutely Continuous Mutation Sequence -- 12.2 Convergence of Random Direction Methods -- References -- 13 Convergence of Stationary Random Search Methods for Positive Success Probability -- Reference -- 14 Random Search Methods of Convergence Order O(n-α)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- 15 Random Search Methods with a Linear Rate of Convergence -- 15.1 Methods with a Rate of Convergence that Is at Least Linear -- 15.2 Methods with a Rate of Convergence that Is at Most Linear -- 15.3 Linear Convergence for Positive Probability of Success -- References -- 16 Success/Failure-Driven Random Direction Procedures -- References -- 17 Hybrid Methods -- References -- Part IV Optimization Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18 Solving Optimization Problems Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18.1 Introduction -- 18.2 Convergence of the Search Process (Xt) -- 18.3 Estimation of the Minimum, Maximum Entry, Leaving Probability, Resp., αt, rt -- References -- A Properties of the Uniform Distribution on the Unit Sphere -- B Analytical Tools -- C Probabilistic Tools -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Optimierung</subfield><subfield code="0">(DE-588)4057625-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Optimierung</subfield><subfield code="0">(DE-588)4057625-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Marti, Kurt</subfield><subfield code="t">Optimization under Stochastic Uncertainty</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030556617</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033605219</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6388677</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048224486 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:39Z |
indexdate | 2024-07-10T09:32:29Z |
institution | BVB |
isbn | 9783030556624 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033605219 |
oclc_num | 1206371382 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (390 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | International Series in Operations Research and Management Science Ser. |
spelling | Marti, Kurt Verfasser aut Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods Cham Springer International Publishing AG 2020 ©2020 1 Online-Ressource (390 Seiten) txt rdacontent c rdamedia cr rdacarrier International Series in Operations Research and Management Science Ser. v.296 Description based on publisher supplied metadata and other sources Intro -- Preface -- Contents -- Symbols and Abbreviations -- Part I Stochastic Optimization Methods -- 1 Optimal Control Under Stochastic Uncertainty -- 1.1 Stochastic Control Systems -- 1.1.1 Differential and Integral Equations Under Stochastic Uncertainty -- 1.1.1.1 Parametric Representation of the Differential/Integral Equation Under Stochastic Uncertainty -- 1.1.2 Objective Function -- 1.1.2.1 Optimal Control Under Stochastic Uncertainty -- 1.2 Control Laws -- 1.3 Computation of Expectations by Means of Taylor Expansions -- 1.3.1 Complete Taylor Expansion -- 1.3.2 Inner or Partial Taylor Expansion -- 1.4 Taylor Approximation of Control Problems Under Stochastic Uncertainty: General Procedure -- 1.5 Control Problems with Linear and Sublinear Cost Functions -- 1.6 Stochastic Optimal Open-Loop Feedback Control of Tracking Systems -- 1.6.1 Approximation of the Expected Costs: Expansions of 1st Order -- 1.6.2 Approximate Computation of the Fundamental Matrix -- References -- 2 Stochastic Optimization of Regulators -- 2.1 Introduction -- 2.2 Regulator Design Under Stochastic Uncertainty -- 2.3 Optimal Feedback Functions Under Stochastic Uncertainty -- 2.3.1 Quadratic Cost Functions -- 2.3.1.1 Computation of the Expectation by Taylor Expansion -- 2.3.1.2 Approximation of the Expectation of the Total Cost Function -- 2.4 Calculation of the Tracking Error Rates (Sensitivities) -- 2.4.1 Partial Derivative with Respect to pD -- 2.4.2 Partial Derivative with Respect to q0 -- 2.4.3 Partial Derivative with Respect to 0 -- 2.4.4 Partial Derivative with Respect to e0 -- 2.4.4.1 Partial Derivative with Respect to eq -- 2.5 The Approximate Regulator Optimization Problem -- 2.6 Active Structural Control Under Stochastic Uncertainty -- 2.6.1 Example -- References -- 3 Optimal Open-Loop Control of Dynamic Systems Under Stochastic Uncertainty 3.1 Optimal Control Problems Under Stochastic Uncertainty -- 3.1.1 Computation of the Expectation of the Cost Functions L, G -- 3.2 Solution of the Substitute Control Problem -- 3.3 More General Dynamic Control Systems -- Reference -- 4 Construction of Feedback Control by Means of Homotopy Methods -- References -- 5 Constructions of Limit State Functions -- 5.1 Introduction -- 5.2 Optimization-Based Construction of Limit State Functions -- 5.3 The (Limit) State Function s -- 5.3.1 Characterization of Safe States -- 5.4 Computation of the State Function for Concrete Cases -- 5.4.1 Mechanical Structures Under Stochastic Uncertainty -- 5.4.1.1 Trusses -- 5.4.1.2 Elastic-Plastic Mechanical Structures -- 5.4.2 Linear-Quadratic Problems with Scalar Response Function -- 5.4.3 Approximation of the General Operating Condition -- 5.4.4 Two-Sided Constraints for the Response Functions -- 5.5 Systems/Structures with Parameter-Dependent States -- 5.5.1 Dynamic Control Systems -- 5.5.2 Variational Problems -- 5.5.3 Example to Systems with Control and Variational Problems -- 5.5.3.1 Control Problems -- 5.5.3.2 Variational Problems -- 5.5.3.3 Transformation of Control Problems into Variational Problems -- 5.5.4 Discretization of Control Systems -- 5.5.4.1 Control Problems with Quadratic Objective Functions -- 5.5.4.2 Tracking Problems -- 5.5.4.3 Endpoint Control -- 5.5.4.4 Control Problems with Sublinear Objective Functions -- 5.5.5 Reliability-Based Optimal Control -- 5.5.5.1 Computation of the Probability of Survival -- 5.5.5.2 Tracking Problems with Quadratic Cost Function -- 5.5.5.3 Endpoint Control in Case of Sublinear Cost Function -- 5.5.5.4 Further Lower Bound for psD -- 5.5.5.5 Reliability Computation by Using Copulas -- 5.5.5.6 Approximations of PoS -- References Part II Optimization by Stochastic Methods: Foundations and Optimal Control/Acceleration of Random Search Methods (RSM) -- 6 Random Search Procedures for Global Optimization -- 6.1 Introduction -- 6.2 The Convergence of the Basic Random Search Procedure -- 6.2.1 Discrete Optimization Problems -- 6.3 Adaptive Random Search Methods -- 6.3.1 Infinite-Stage Search Processes -- 6.4 Convex Problems -- References -- 7 Controlled Random Search Under Uncertainty -- 7.1 The Controlled (or Adaptive) Random Search Method -- 7.1.1 The Convergence of the Controlled Random Search Procedure -- 7.1.2 A Stopping Rule -- 7.2 Computation of the Conditional Distribution of F Given the Process History: Information Processing -- References -- 8 Controlled Random Search Procedures for Global Optimization -- 8.1 Introduction -- 8.2 Convergence of the Random Search Procedure -- 8.3 Controlled Random Search Methods -- 8.4 Computation of Optimal Controls -- 8.5 Convergence Rates of Controlled Random Search Procedures -- 8.6 Numerical Realizations of Optimal Control Laws -- References -- Part III Random Search Methods (RSM): Convergence and Convergence Rates -- 9 Mathematical Model of Random Search Methods and Elementary Properties -- References -- 10 Special Random Search Methods -- 10.1 R-S-M with Absolutely Continuous Mutation Sequence -- 10.2 Random Direction Methods -- 10.3 Relationships Between Random Direction Methods and Methods with an Absolutely Continuous Mutation Sequence -- References -- 11 Accessibility Theorems -- References -- 12 Convergence Theorems -- 12.1 Convergence of Random Search Methods with an Absolutely Continuous Mutation Sequence -- 12.2 Convergence of Random Direction Methods -- References -- 13 Convergence of Stationary Random Search Methods for Positive Success Probability -- Reference -- 14 Random Search Methods of Convergence Order O(n-α) References -- 15 Random Search Methods with a Linear Rate of Convergence -- 15.1 Methods with a Rate of Convergence that Is at Least Linear -- 15.2 Methods with a Rate of Convergence that Is at Most Linear -- 15.3 Linear Convergence for Positive Probability of Success -- References -- 16 Success/Failure-Driven Random Direction Procedures -- References -- 17 Hybrid Methods -- References -- Part IV Optimization Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18 Solving Optimization Problems Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18.1 Introduction -- 18.2 Convergence of the Search Process (Xt) -- 18.3 Estimation of the Minimum, Maximum Entry, Leaving Probability, Resp., αt, rt -- References -- A Properties of the Uniform Distribution on the Unit Sphere -- B Analytical Tools -- C Probabilistic Tools -- Index Operations research Stochastic processes Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd rswk-swf Stochastische Optimierung (DE-588)4057625-5 gnd rswk-swf Stochastische Optimierung (DE-588)4057625-5 s Entscheidung bei Unsicherheit (DE-588)4070864-0 s DE-604 Erscheint auch als Druck-Ausgabe Marti, Kurt Optimization under Stochastic Uncertainty Cham : Springer International Publishing AG,c2020 9783030556617 |
spellingShingle | Marti, Kurt Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods Intro -- Preface -- Contents -- Symbols and Abbreviations -- Part I Stochastic Optimization Methods -- 1 Optimal Control Under Stochastic Uncertainty -- 1.1 Stochastic Control Systems -- 1.1.1 Differential and Integral Equations Under Stochastic Uncertainty -- 1.1.1.1 Parametric Representation of the Differential/Integral Equation Under Stochastic Uncertainty -- 1.1.2 Objective Function -- 1.1.2.1 Optimal Control Under Stochastic Uncertainty -- 1.2 Control Laws -- 1.3 Computation of Expectations by Means of Taylor Expansions -- 1.3.1 Complete Taylor Expansion -- 1.3.2 Inner or Partial Taylor Expansion -- 1.4 Taylor Approximation of Control Problems Under Stochastic Uncertainty: General Procedure -- 1.5 Control Problems with Linear and Sublinear Cost Functions -- 1.6 Stochastic Optimal Open-Loop Feedback Control of Tracking Systems -- 1.6.1 Approximation of the Expected Costs: Expansions of 1st Order -- 1.6.2 Approximate Computation of the Fundamental Matrix -- References -- 2 Stochastic Optimization of Regulators -- 2.1 Introduction -- 2.2 Regulator Design Under Stochastic Uncertainty -- 2.3 Optimal Feedback Functions Under Stochastic Uncertainty -- 2.3.1 Quadratic Cost Functions -- 2.3.1.1 Computation of the Expectation by Taylor Expansion -- 2.3.1.2 Approximation of the Expectation of the Total Cost Function -- 2.4 Calculation of the Tracking Error Rates (Sensitivities) -- 2.4.1 Partial Derivative with Respect to pD -- 2.4.2 Partial Derivative with Respect to q0 -- 2.4.3 Partial Derivative with Respect to 0 -- 2.4.4 Partial Derivative with Respect to e0 -- 2.4.4.1 Partial Derivative with Respect to eq -- 2.5 The Approximate Regulator Optimization Problem -- 2.6 Active Structural Control Under Stochastic Uncertainty -- 2.6.1 Example -- References -- 3 Optimal Open-Loop Control of Dynamic Systems Under Stochastic Uncertainty 3.1 Optimal Control Problems Under Stochastic Uncertainty -- 3.1.1 Computation of the Expectation of the Cost Functions L, G -- 3.2 Solution of the Substitute Control Problem -- 3.3 More General Dynamic Control Systems -- Reference -- 4 Construction of Feedback Control by Means of Homotopy Methods -- References -- 5 Constructions of Limit State Functions -- 5.1 Introduction -- 5.2 Optimization-Based Construction of Limit State Functions -- 5.3 The (Limit) State Function s -- 5.3.1 Characterization of Safe States -- 5.4 Computation of the State Function for Concrete Cases -- 5.4.1 Mechanical Structures Under Stochastic Uncertainty -- 5.4.1.1 Trusses -- 5.4.1.2 Elastic-Plastic Mechanical Structures -- 5.4.2 Linear-Quadratic Problems with Scalar Response Function -- 5.4.3 Approximation of the General Operating Condition -- 5.4.4 Two-Sided Constraints for the Response Functions -- 5.5 Systems/Structures with Parameter-Dependent States -- 5.5.1 Dynamic Control Systems -- 5.5.2 Variational Problems -- 5.5.3 Example to Systems with Control and Variational Problems -- 5.5.3.1 Control Problems -- 5.5.3.2 Variational Problems -- 5.5.3.3 Transformation of Control Problems into Variational Problems -- 5.5.4 Discretization of Control Systems -- 5.5.4.1 Control Problems with Quadratic Objective Functions -- 5.5.4.2 Tracking Problems -- 5.5.4.3 Endpoint Control -- 5.5.4.4 Control Problems with Sublinear Objective Functions -- 5.5.5 Reliability-Based Optimal Control -- 5.5.5.1 Computation of the Probability of Survival -- 5.5.5.2 Tracking Problems with Quadratic Cost Function -- 5.5.5.3 Endpoint Control in Case of Sublinear Cost Function -- 5.5.5.4 Further Lower Bound for psD -- 5.5.5.5 Reliability Computation by Using Copulas -- 5.5.5.6 Approximations of PoS -- References Part II Optimization by Stochastic Methods: Foundations and Optimal Control/Acceleration of Random Search Methods (RSM) -- 6 Random Search Procedures for Global Optimization -- 6.1 Introduction -- 6.2 The Convergence of the Basic Random Search Procedure -- 6.2.1 Discrete Optimization Problems -- 6.3 Adaptive Random Search Methods -- 6.3.1 Infinite-Stage Search Processes -- 6.4 Convex Problems -- References -- 7 Controlled Random Search Under Uncertainty -- 7.1 The Controlled (or Adaptive) Random Search Method -- 7.1.1 The Convergence of the Controlled Random Search Procedure -- 7.1.2 A Stopping Rule -- 7.2 Computation of the Conditional Distribution of F Given the Process History: Information Processing -- References -- 8 Controlled Random Search Procedures for Global Optimization -- 8.1 Introduction -- 8.2 Convergence of the Random Search Procedure -- 8.3 Controlled Random Search Methods -- 8.4 Computation of Optimal Controls -- 8.5 Convergence Rates of Controlled Random Search Procedures -- 8.6 Numerical Realizations of Optimal Control Laws -- References -- Part III Random Search Methods (RSM): Convergence and Convergence Rates -- 9 Mathematical Model of Random Search Methods and Elementary Properties -- References -- 10 Special Random Search Methods -- 10.1 R-S-M with Absolutely Continuous Mutation Sequence -- 10.2 Random Direction Methods -- 10.3 Relationships Between Random Direction Methods and Methods with an Absolutely Continuous Mutation Sequence -- References -- 11 Accessibility Theorems -- References -- 12 Convergence Theorems -- 12.1 Convergence of Random Search Methods with an Absolutely Continuous Mutation Sequence -- 12.2 Convergence of Random Direction Methods -- References -- 13 Convergence of Stationary Random Search Methods for Positive Success Probability -- Reference -- 14 Random Search Methods of Convergence Order O(n-α) References -- 15 Random Search Methods with a Linear Rate of Convergence -- 15.1 Methods with a Rate of Convergence that Is at Least Linear -- 15.2 Methods with a Rate of Convergence that Is at Most Linear -- 15.3 Linear Convergence for Positive Probability of Success -- References -- 16 Success/Failure-Driven Random Direction Procedures -- References -- 17 Hybrid Methods -- References -- Part IV Optimization Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18 Solving Optimization Problems Under Stochastic Uncertainty by Random Search Methods (RSM) -- 18.1 Introduction -- 18.2 Convergence of the Search Process (Xt) -- 18.3 Estimation of the Minimum, Maximum Entry, Leaving Probability, Resp., αt, rt -- References -- A Properties of the Uniform Distribution on the Unit Sphere -- B Analytical Tools -- C Probabilistic Tools -- Index Operations research Stochastic processes Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd Stochastische Optimierung (DE-588)4057625-5 gnd |
subject_GND | (DE-588)4070864-0 (DE-588)4057625-5 |
title | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_auth | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_exact_search | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_exact_search_txtP | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_full | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_fullStr | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_full_unstemmed | Optimization under Stochastic Uncertainty Methods, Control and Random Search Methods |
title_short | Optimization under Stochastic Uncertainty |
title_sort | optimization under stochastic uncertainty methods control and random search methods |
title_sub | Methods, Control and Random Search Methods |
topic | Operations research Stochastic processes Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd Stochastische Optimierung (DE-588)4057625-5 gnd |
topic_facet | Operations research Stochastic processes Entscheidung bei Unsicherheit Stochastische Optimierung |
work_keys_str_mv | AT martikurt optimizationunderstochasticuncertaintymethodscontrolandrandomsearchmethods |