Sustainable Bioeconomy: Pathways to Sustainable Development Goals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer Singapore Pte. Limited
2020
|
Schlagworte: | |
Online-Zugang: | BFE01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (347 Seiten) |
ISBN: | 9789811573217 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048224467 | ||
003 | DE-604 | ||
005 | 20221110 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9789811573217 |9 978-981-1573-21-7 | ||
035 | |a (ZDB-30-PQE)EBC6386151 | ||
035 | |a (ZDB-30-PAD)EBC6386151 | ||
035 | |a (ZDB-89-EBL)EBL6386151 | ||
035 | |a (OCoLC)1206401926 | ||
035 | |a (DE-599)BVBBV048224467 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Eb1 | ||
082 | 0 | |a 338.927 | |
100 | 1 | |a Venkatramanan, V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sustainable Bioeconomy |b Pathways to Sustainable Development Goals |
264 | 1 | |a Singapore |b Springer Singapore Pte. Limited |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (347 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Exploring the Economics of the Circular Bioeconomy -- 1.1 Introduction -- 1.2 Circularity in Bioeconomy Systems -- 1.3 Optimal Rate of Circularity -- 1.4 Discussion -- 1.5 Conclusion -- References -- 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy -- 2.1 Introduction -- 2.2 Consumption and Economic Growth -- 2.3 Consumption and Sustainable Growth -- 2.4 Consumption, Economics, and Culture -- 2.5 Reconciling Economic Theory and Historical Context -- 2.6 Values and the Tragedy of the Commons -- 2.7 The Role of Culture in Averting and Promoting Tragedy -- 2.7.1 Indigenous Relationship with the Commons -- 2.7.2 Colonists Promotion of ''Tragedy'' -- 2.8 Perception of Resource Value, Market Outcomes, and Price -- 2.9 Competition and the Tragedy of the Commons -- 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium -- 2.11 Market Prices, Values, and Common Goods -- 2.12 Conscious Consumption and the Social Norm of Sustainability -- 2.13 Conclusion -- References -- 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach -- 3.1 Introduction -- 3.2 Conceptual Framework -- 3.3 Sectors in the Ecuadorian Bioeconomy -- 3.3.1 The Ecuadorian Economic Structure -- 3.3.2 Selection of Bioeconomy Subsectors -- 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador -- 3.4.1 Input-Output Model (IOM) -- 3.4.2 General Equilibrium Model -- 3.4.3 Social Accounting Matrix -- 3.5 Comparative Analysis of the Models -- 3.6 Contribution to the Ecuadorian Bioeconomy -- 3.6.1 Labour and Salary -- 3.6.2 Production and Consumption -- 3.6.3 Growth and Taxes -- 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario | |
505 | 8 | |a 3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used -- 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides -- 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development -- 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion -- 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy -- 3.8 Conclusion -- References -- 4: Biobutanol Production from Agricultural Biomass -- 4.1 Introduction -- 4.2 Biobutanol -- 4.3 Agricultural Biomass -- 4.3.1 Availability of Biomass -- 4.3.2 Chemical Composition of Biomass -- 4.4 Biobutanol Production from Agricultural Biomass -- 4.4.1 Substrate Preparation -- 4.4.2 Medium Formulation -- 4.4.3 Microorganism and Inoculum Preparation -- 4.4.4 ABE Fermentation -- 4.4.5 Recovery -- 4.5 Conclusion -- References -- 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society -- 5.1 Introduction -- 5.2 Biowastes -- 5.2.1 Valorization of Biomass into Fuels and High Value Added Products -- 5.2.1.1 Anaerobic Digestion of Biomass -- 5.2.1.2 Bioalcohol Production from Biomass -- 5.2.1.3 Biodiesel Production from Biomass -- 5.2.1.4 Biohydrogen Production from Biomass -- 5.2.1.5 Bulk Chemicals from Biomass -- 5.2.2 Valorization of Food Waste into Chemicals and Fuels -- 5.2.2.1 Existing Methods of Management of Food Wastes -- 5.2.2.2 Fuels from Food Wastes -- Anaerobic Fermentation -- Extraction of Sugars from Food Wastes -- Biohydrogen -- Biomethane -- Biohythane -- Volatile Fatty Acids -- Bioethanol -- Biodiesel Production -- 5.2.2.3 Chemicals Production from Food Wastes -- 5.2.3 Industrial Wastes -- 5.3 Conclusion -- References | |
505 | 8 | |a 6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives -- 6.1 Introduction -- 6.2 Potential and Availability of Agro-Residues -- 6.3 Biorefinery Methods -- 6.3.1 Thermochemical Conversion Method -- 6.3.1.1 Gasification -- 6.3.1.2 Pyrolysis -- 6.3.1.3 Combustion -- 6.3.2 Biochemical Conversion Methods -- 6.3.2.1 Biomass Pretreatment -- 6.3.2.2 Fermentation Process -- 6.3.2.3 Anaerobic Digestion -- 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology -- 6.4 Biofuels Production from Agricultural Residues -- 6.4.1 Solid Biofuels -- 6.4.2 Liquid Biofuels -- 6.4.3 Gaseous Biofuels -- 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach -- 6.5.1 Valorization of Cellulose -- 6.5.2 Valorization of Hemicellulose -- 6.5.3 Valorization of Lignin -- 6.6 Challenges in Commercialization -- 6.7 Conclusion -- References -- 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds -- 7.1 Introduction -- 7.2 Flavourings and Fragrance Chemicals -- 7.3 Biotechnological Methods for Production of Flavours -- 7.3.1 Enzymatic Methods -- 7.3.2 Microbial Methods -- 7.3.2.1 Fruity and Floral Terpenes -- 7.3.2.2 Aromatic Compounds in Alcoholic Beverages -- 7.3.2.3 Esters -- 7.3.2.4 Ketones -- 7.3.2.5 Fruity Lactones -- 7.3.2.6 Phenolic Aldehydes -- 7.3.2.7 Grassy Aroma -- 7.3.2.8 Musk Aroma -- 7.3.2.9 Synthetic Biology -- 7.3.2.10 Metabolic Engineering -- 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds -- 7.3.2.12 Bioreactor Model -- 7.3.3 Plant Tissue Culture Methods -- 7.4 Sensory Evaluation of Flavour Compounds -- 7.5 Product Formulation/Delivery Systems of Flavours -- 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours -- 7.7 Conclusion -- References -- 8: Phytochemicals for the Management of Stored Product Insects | |
505 | 8 | |a 8.1 Introduction -- 8.2 Phytochemicals -- 8.3 Extraction Methods -- 8.3.1 Solvent Extraction Method -- 8.3.2 Microwave Assisted Extraction (MAE) -- 8.3.3 Ultrasound Assisted Extraction (UAE) -- 8.3.4 Supercritical Fluid Extraction (SFE) -- 8.3.5 Hydrodistillation -- 8.3.6 Soxhlet Extraction -- 8.3.7 Solid Phase Extraction (SPE) -- 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests -- 8.4.1 Area Preference Test -- 8.4.2 Feeding Preference Test -- 8.5 Analysis of Phytochemicals -- 8.5.1 IR Spectroscopy -- 8.5.2 UV Visible Spectroscopy -- 8.6 Insect Repellent Packaging -- 8.7 Constraints of Using Phytochemicals in Pest Management -- 8.8 Conclusion -- References -- 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... -- 9.1 Introduction -- 9.2 Aim and Objectives -- 9.3 Research Methodology -- 9.3.1 Research Design -- 9.3.2 Research Setting -- 9.3.3 Sampling -- 9.4 Data Collection -- 9.4.1 Quantitative Data Collection -- 9.4.2 Qualitative Data Collection -- 9.4.3 Data Analysis -- 9.5 Results and Discussion -- 9.5.1 The Contextualisation of IKS -- 9.5.2 Challenges of the IKS on Agricultural Practices -- 9.5.3 Benefits of the IKS on Agricultural Practice -- 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security -- 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation -- 9.8 IKS and Sustainable Agriculture Impact on Food Security -- 9.9 Initiatives for Sustainability of IKS in Agricultural Practices -- 9.10 Conclusion -- Web Links -- References -- 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System -- 10.1 Introduction -- 10.2 Sustainable Development in Agroecosystem -- 10.3 Integrated Bio-cycle Farming System -- 10.4 Life Cycle Assessment | |
505 | 8 | |a 10.5 Biowastes Management -- 10.6 Bioenergy and Biogas Management -- 10.7 Agricultural Bioeconomy -- 10.8 Conclusion -- References -- 11: Biopesticides for Pest Management -- 11.1 Introduction -- 11.2 Biopesticides: Global and Indian Perspective -- 11.3 Categories of Biopesticides -- 11.4 Biopesticides Derived from Bacteria -- 11.4.1 Mode of Action of Bacillus thuringiensis -- 11.4.2 Advantages of Bacterial Biopesticides -- 11.4.3 Disadvantages of Microbial Insecticides -- 11.5 Viruses as Biopesticides -- 11.5.1 Mode of Action of Viruses -- 11.5.2 Steps Involved in the Preparation of NPV and CPV -- 11.5.3 Advantages of Viral Biopesticides -- 11.5.4 Disadvantages of Viral Biopesticides -- 11.6 Fungi as Biopesticides -- 11.6.1 Mode of Action of Fungi-Based Biopesticides -- 11.6.2 Advantages of Fungi-Based Biopesticides -- 11.6.3 Disadvantages of Fungi-Based Biopesticides -- 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides -- 11.7.1 Mode of Action of EPN -- 11.7.2 Advantages of EPN -- 11.7.3 Disadvantages of EPN -- 11.8 Protozoans as Biopesticides -- 11.8.1 Mode of Action of Protozoans -- 11.9 Natural Enemies of Pests as Biocontrol Agents -- 11.9.1 Advantages of Parasitoids in Biological Pest Management -- 11.9.2 Disadvantages of Parasitoids in Biological Pest Management -- 11.9.3 Advantages of Predators in Biological Pest Management -- 11.9.4 Disadvantages of Predators in Biological Pest Management -- 11.10 Biochemical Pesticides -- 11.10.1 Mode of Action -- 11.10.2 Semiochemicals -- 11.10.3 Advantages of Biochemical Pesticides -- 11.10.4 Disadvantages of Biochemical Pesticides -- 11.11 Plant-Incorporated Protectants -- 11.12 Biopesticides Formulations -- 11.12.1 Dry Powders -- 11.12.2 Liquid Formulations -- 11.12.3 Compatibility of Biopesticides -- 11.13 Factors Influencing the Success of Biocontrol Agent -- 11.14 Conclusion -- References | |
505 | 8 | |a 12: Renewable Energy for a Low-Carbon Future: Policy Perspectives | |
650 | 4 | |a Sustainable development | |
650 | 4 | |a Sustainable development-Government policy | |
700 | 1 | |a Shah, Shachi |e Sonstige |4 oth | |
700 | 1 | |a Prasad, Ram |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Venkatramanan, V. |t Sustainable Bioeconomy |d Singapore : Springer Singapore Pte. Limited,c2020 |z 9789811573200 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033605200 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hnee/detail.action?docID=6386151 |l BFE01 |p ZDB-30-PQE |q BFE_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184006563987456 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Venkatramanan, V. |
author_facet | Venkatramanan, V. |
author_role | aut |
author_sort | Venkatramanan, V. |
author_variant | v v vv |
building | Verbundindex |
bvnumber | BV048224467 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Exploring the Economics of the Circular Bioeconomy -- 1.1 Introduction -- 1.2 Circularity in Bioeconomy Systems -- 1.3 Optimal Rate of Circularity -- 1.4 Discussion -- 1.5 Conclusion -- References -- 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy -- 2.1 Introduction -- 2.2 Consumption and Economic Growth -- 2.3 Consumption and Sustainable Growth -- 2.4 Consumption, Economics, and Culture -- 2.5 Reconciling Economic Theory and Historical Context -- 2.6 Values and the Tragedy of the Commons -- 2.7 The Role of Culture in Averting and Promoting Tragedy -- 2.7.1 Indigenous Relationship with the Commons -- 2.7.2 Colonists Promotion of ''Tragedy'' -- 2.8 Perception of Resource Value, Market Outcomes, and Price -- 2.9 Competition and the Tragedy of the Commons -- 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium -- 2.11 Market Prices, Values, and Common Goods -- 2.12 Conscious Consumption and the Social Norm of Sustainability -- 2.13 Conclusion -- References -- 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach -- 3.1 Introduction -- 3.2 Conceptual Framework -- 3.3 Sectors in the Ecuadorian Bioeconomy -- 3.3.1 The Ecuadorian Economic Structure -- 3.3.2 Selection of Bioeconomy Subsectors -- 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador -- 3.4.1 Input-Output Model (IOM) -- 3.4.2 General Equilibrium Model -- 3.4.3 Social Accounting Matrix -- 3.5 Comparative Analysis of the Models -- 3.6 Contribution to the Ecuadorian Bioeconomy -- 3.6.1 Labour and Salary -- 3.6.2 Production and Consumption -- 3.6.3 Growth and Taxes -- 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario 3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used -- 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides -- 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development -- 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion -- 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy -- 3.8 Conclusion -- References -- 4: Biobutanol Production from Agricultural Biomass -- 4.1 Introduction -- 4.2 Biobutanol -- 4.3 Agricultural Biomass -- 4.3.1 Availability of Biomass -- 4.3.2 Chemical Composition of Biomass -- 4.4 Biobutanol Production from Agricultural Biomass -- 4.4.1 Substrate Preparation -- 4.4.2 Medium Formulation -- 4.4.3 Microorganism and Inoculum Preparation -- 4.4.4 ABE Fermentation -- 4.4.5 Recovery -- 4.5 Conclusion -- References -- 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society -- 5.1 Introduction -- 5.2 Biowastes -- 5.2.1 Valorization of Biomass into Fuels and High Value Added Products -- 5.2.1.1 Anaerobic Digestion of Biomass -- 5.2.1.2 Bioalcohol Production from Biomass -- 5.2.1.3 Biodiesel Production from Biomass -- 5.2.1.4 Biohydrogen Production from Biomass -- 5.2.1.5 Bulk Chemicals from Biomass -- 5.2.2 Valorization of Food Waste into Chemicals and Fuels -- 5.2.2.1 Existing Methods of Management of Food Wastes -- 5.2.2.2 Fuels from Food Wastes -- Anaerobic Fermentation -- Extraction of Sugars from Food Wastes -- Biohydrogen -- Biomethane -- Biohythane -- Volatile Fatty Acids -- Bioethanol -- Biodiesel Production -- 5.2.2.3 Chemicals Production from Food Wastes -- 5.2.3 Industrial Wastes -- 5.3 Conclusion -- References 6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives -- 6.1 Introduction -- 6.2 Potential and Availability of Agro-Residues -- 6.3 Biorefinery Methods -- 6.3.1 Thermochemical Conversion Method -- 6.3.1.1 Gasification -- 6.3.1.2 Pyrolysis -- 6.3.1.3 Combustion -- 6.3.2 Biochemical Conversion Methods -- 6.3.2.1 Biomass Pretreatment -- 6.3.2.2 Fermentation Process -- 6.3.2.3 Anaerobic Digestion -- 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology -- 6.4 Biofuels Production from Agricultural Residues -- 6.4.1 Solid Biofuels -- 6.4.2 Liquid Biofuels -- 6.4.3 Gaseous Biofuels -- 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach -- 6.5.1 Valorization of Cellulose -- 6.5.2 Valorization of Hemicellulose -- 6.5.3 Valorization of Lignin -- 6.6 Challenges in Commercialization -- 6.7 Conclusion -- References -- 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds -- 7.1 Introduction -- 7.2 Flavourings and Fragrance Chemicals -- 7.3 Biotechnological Methods for Production of Flavours -- 7.3.1 Enzymatic Methods -- 7.3.2 Microbial Methods -- 7.3.2.1 Fruity and Floral Terpenes -- 7.3.2.2 Aromatic Compounds in Alcoholic Beverages -- 7.3.2.3 Esters -- 7.3.2.4 Ketones -- 7.3.2.5 Fruity Lactones -- 7.3.2.6 Phenolic Aldehydes -- 7.3.2.7 Grassy Aroma -- 7.3.2.8 Musk Aroma -- 7.3.2.9 Synthetic Biology -- 7.3.2.10 Metabolic Engineering -- 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds -- 7.3.2.12 Bioreactor Model -- 7.3.3 Plant Tissue Culture Methods -- 7.4 Sensory Evaluation of Flavour Compounds -- 7.5 Product Formulation/Delivery Systems of Flavours -- 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours -- 7.7 Conclusion -- References -- 8: Phytochemicals for the Management of Stored Product Insects 8.1 Introduction -- 8.2 Phytochemicals -- 8.3 Extraction Methods -- 8.3.1 Solvent Extraction Method -- 8.3.2 Microwave Assisted Extraction (MAE) -- 8.3.3 Ultrasound Assisted Extraction (UAE) -- 8.3.4 Supercritical Fluid Extraction (SFE) -- 8.3.5 Hydrodistillation -- 8.3.6 Soxhlet Extraction -- 8.3.7 Solid Phase Extraction (SPE) -- 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests -- 8.4.1 Area Preference Test -- 8.4.2 Feeding Preference Test -- 8.5 Analysis of Phytochemicals -- 8.5.1 IR Spectroscopy -- 8.5.2 UV Visible Spectroscopy -- 8.6 Insect Repellent Packaging -- 8.7 Constraints of Using Phytochemicals in Pest Management -- 8.8 Conclusion -- References -- 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... -- 9.1 Introduction -- 9.2 Aim and Objectives -- 9.3 Research Methodology -- 9.3.1 Research Design -- 9.3.2 Research Setting -- 9.3.3 Sampling -- 9.4 Data Collection -- 9.4.1 Quantitative Data Collection -- 9.4.2 Qualitative Data Collection -- 9.4.3 Data Analysis -- 9.5 Results and Discussion -- 9.5.1 The Contextualisation of IKS -- 9.5.2 Challenges of the IKS on Agricultural Practices -- 9.5.3 Benefits of the IKS on Agricultural Practice -- 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security -- 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation -- 9.8 IKS and Sustainable Agriculture Impact on Food Security -- 9.9 Initiatives for Sustainability of IKS in Agricultural Practices -- 9.10 Conclusion -- Web Links -- References -- 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System -- 10.1 Introduction -- 10.2 Sustainable Development in Agroecosystem -- 10.3 Integrated Bio-cycle Farming System -- 10.4 Life Cycle Assessment 10.5 Biowastes Management -- 10.6 Bioenergy and Biogas Management -- 10.7 Agricultural Bioeconomy -- 10.8 Conclusion -- References -- 11: Biopesticides for Pest Management -- 11.1 Introduction -- 11.2 Biopesticides: Global and Indian Perspective -- 11.3 Categories of Biopesticides -- 11.4 Biopesticides Derived from Bacteria -- 11.4.1 Mode of Action of Bacillus thuringiensis -- 11.4.2 Advantages of Bacterial Biopesticides -- 11.4.3 Disadvantages of Microbial Insecticides -- 11.5 Viruses as Biopesticides -- 11.5.1 Mode of Action of Viruses -- 11.5.2 Steps Involved in the Preparation of NPV and CPV -- 11.5.3 Advantages of Viral Biopesticides -- 11.5.4 Disadvantages of Viral Biopesticides -- 11.6 Fungi as Biopesticides -- 11.6.1 Mode of Action of Fungi-Based Biopesticides -- 11.6.2 Advantages of Fungi-Based Biopesticides -- 11.6.3 Disadvantages of Fungi-Based Biopesticides -- 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides -- 11.7.1 Mode of Action of EPN -- 11.7.2 Advantages of EPN -- 11.7.3 Disadvantages of EPN -- 11.8 Protozoans as Biopesticides -- 11.8.1 Mode of Action of Protozoans -- 11.9 Natural Enemies of Pests as Biocontrol Agents -- 11.9.1 Advantages of Parasitoids in Biological Pest Management -- 11.9.2 Disadvantages of Parasitoids in Biological Pest Management -- 11.9.3 Advantages of Predators in Biological Pest Management -- 11.9.4 Disadvantages of Predators in Biological Pest Management -- 11.10 Biochemical Pesticides -- 11.10.1 Mode of Action -- 11.10.2 Semiochemicals -- 11.10.3 Advantages of Biochemical Pesticides -- 11.10.4 Disadvantages of Biochemical Pesticides -- 11.11 Plant-Incorporated Protectants -- 11.12 Biopesticides Formulations -- 11.12.1 Dry Powders -- 11.12.2 Liquid Formulations -- 11.12.3 Compatibility of Biopesticides -- 11.13 Factors Influencing the Success of Biocontrol Agent -- 11.14 Conclusion -- References 12: Renewable Energy for a Low-Carbon Future: Policy Perspectives |
ctrlnum | (ZDB-30-PQE)EBC6386151 (ZDB-30-PAD)EBC6386151 (ZDB-89-EBL)EBL6386151 (OCoLC)1206401926 (DE-599)BVBBV048224467 |
dewey-full | 338.927 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 338 - Production |
dewey-raw | 338.927 |
dewey-search | 338.927 |
dewey-sort | 3338.927 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10960nmm a2200481zc 4500</leader><controlfield tag="001">BV048224467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811573217</subfield><subfield code="9">978-981-1573-21-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6386151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6386151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6386151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1206401926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048224467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Eb1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">338.927</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Venkatramanan, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable Bioeconomy</subfield><subfield code="b">Pathways to Sustainable Development Goals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer Singapore Pte. Limited</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (347 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Exploring the Economics of the Circular Bioeconomy -- 1.1 Introduction -- 1.2 Circularity in Bioeconomy Systems -- 1.3 Optimal Rate of Circularity -- 1.4 Discussion -- 1.5 Conclusion -- References -- 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy -- 2.1 Introduction -- 2.2 Consumption and Economic Growth -- 2.3 Consumption and Sustainable Growth -- 2.4 Consumption, Economics, and Culture -- 2.5 Reconciling Economic Theory and Historical Context -- 2.6 Values and the Tragedy of the Commons -- 2.7 The Role of Culture in Averting and Promoting Tragedy -- 2.7.1 Indigenous Relationship with the Commons -- 2.7.2 Colonists Promotion of ''Tragedy'' -- 2.8 Perception of Resource Value, Market Outcomes, and Price -- 2.9 Competition and the Tragedy of the Commons -- 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium -- 2.11 Market Prices, Values, and Common Goods -- 2.12 Conscious Consumption and the Social Norm of Sustainability -- 2.13 Conclusion -- References -- 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach -- 3.1 Introduction -- 3.2 Conceptual Framework -- 3.3 Sectors in the Ecuadorian Bioeconomy -- 3.3.1 The Ecuadorian Economic Structure -- 3.3.2 Selection of Bioeconomy Subsectors -- 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador -- 3.4.1 Input-Output Model (IOM) -- 3.4.2 General Equilibrium Model -- 3.4.3 Social Accounting Matrix -- 3.5 Comparative Analysis of the Models -- 3.6 Contribution to the Ecuadorian Bioeconomy -- 3.6.1 Labour and Salary -- 3.6.2 Production and Consumption -- 3.6.3 Growth and Taxes -- 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used -- 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides -- 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development -- 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion -- 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy -- 3.8 Conclusion -- References -- 4: Biobutanol Production from Agricultural Biomass -- 4.1 Introduction -- 4.2 Biobutanol -- 4.3 Agricultural Biomass -- 4.3.1 Availability of Biomass -- 4.3.2 Chemical Composition of Biomass -- 4.4 Biobutanol Production from Agricultural Biomass -- 4.4.1 Substrate Preparation -- 4.4.2 Medium Formulation -- 4.4.3 Microorganism and Inoculum Preparation -- 4.4.4 ABE Fermentation -- 4.4.5 Recovery -- 4.5 Conclusion -- References -- 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society -- 5.1 Introduction -- 5.2 Biowastes -- 5.2.1 Valorization of Biomass into Fuels and High Value Added Products -- 5.2.1.1 Anaerobic Digestion of Biomass -- 5.2.1.2 Bioalcohol Production from Biomass -- 5.2.1.3 Biodiesel Production from Biomass -- 5.2.1.4 Biohydrogen Production from Biomass -- 5.2.1.5 Bulk Chemicals from Biomass -- 5.2.2 Valorization of Food Waste into Chemicals and Fuels -- 5.2.2.1 Existing Methods of Management of Food Wastes -- 5.2.2.2 Fuels from Food Wastes -- Anaerobic Fermentation -- Extraction of Sugars from Food Wastes -- Biohydrogen -- Biomethane -- Biohythane -- Volatile Fatty Acids -- Bioethanol -- Biodiesel Production -- 5.2.2.3 Chemicals Production from Food Wastes -- 5.2.3 Industrial Wastes -- 5.3 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives -- 6.1 Introduction -- 6.2 Potential and Availability of Agro-Residues -- 6.3 Biorefinery Methods -- 6.3.1 Thermochemical Conversion Method -- 6.3.1.1 Gasification -- 6.3.1.2 Pyrolysis -- 6.3.1.3 Combustion -- 6.3.2 Biochemical Conversion Methods -- 6.3.2.1 Biomass Pretreatment -- 6.3.2.2 Fermentation Process -- 6.3.2.3 Anaerobic Digestion -- 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology -- 6.4 Biofuels Production from Agricultural Residues -- 6.4.1 Solid Biofuels -- 6.4.2 Liquid Biofuels -- 6.4.3 Gaseous Biofuels -- 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach -- 6.5.1 Valorization of Cellulose -- 6.5.2 Valorization of Hemicellulose -- 6.5.3 Valorization of Lignin -- 6.6 Challenges in Commercialization -- 6.7 Conclusion -- References -- 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds -- 7.1 Introduction -- 7.2 Flavourings and Fragrance Chemicals -- 7.3 Biotechnological Methods for Production of Flavours -- 7.3.1 Enzymatic Methods -- 7.3.2 Microbial Methods -- 7.3.2.1 Fruity and Floral Terpenes -- 7.3.2.2 Aromatic Compounds in Alcoholic Beverages -- 7.3.2.3 Esters -- 7.3.2.4 Ketones -- 7.3.2.5 Fruity Lactones -- 7.3.2.6 Phenolic Aldehydes -- 7.3.2.7 Grassy Aroma -- 7.3.2.8 Musk Aroma -- 7.3.2.9 Synthetic Biology -- 7.3.2.10 Metabolic Engineering -- 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds -- 7.3.2.12 Bioreactor Model -- 7.3.3 Plant Tissue Culture Methods -- 7.4 Sensory Evaluation of Flavour Compounds -- 7.5 Product Formulation/Delivery Systems of Flavours -- 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours -- 7.7 Conclusion -- References -- 8: Phytochemicals for the Management of Stored Product Insects</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1 Introduction -- 8.2 Phytochemicals -- 8.3 Extraction Methods -- 8.3.1 Solvent Extraction Method -- 8.3.2 Microwave Assisted Extraction (MAE) -- 8.3.3 Ultrasound Assisted Extraction (UAE) -- 8.3.4 Supercritical Fluid Extraction (SFE) -- 8.3.5 Hydrodistillation -- 8.3.6 Soxhlet Extraction -- 8.3.7 Solid Phase Extraction (SPE) -- 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests -- 8.4.1 Area Preference Test -- 8.4.2 Feeding Preference Test -- 8.5 Analysis of Phytochemicals -- 8.5.1 IR Spectroscopy -- 8.5.2 UV Visible Spectroscopy -- 8.6 Insect Repellent Packaging -- 8.7 Constraints of Using Phytochemicals in Pest Management -- 8.8 Conclusion -- References -- 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... -- 9.1 Introduction -- 9.2 Aim and Objectives -- 9.3 Research Methodology -- 9.3.1 Research Design -- 9.3.2 Research Setting -- 9.3.3 Sampling -- 9.4 Data Collection -- 9.4.1 Quantitative Data Collection -- 9.4.2 Qualitative Data Collection -- 9.4.3 Data Analysis -- 9.5 Results and Discussion -- 9.5.1 The Contextualisation of IKS -- 9.5.2 Challenges of the IKS on Agricultural Practices -- 9.5.3 Benefits of the IKS on Agricultural Practice -- 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security -- 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation -- 9.8 IKS and Sustainable Agriculture Impact on Food Security -- 9.9 Initiatives for Sustainability of IKS in Agricultural Practices -- 9.10 Conclusion -- Web Links -- References -- 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System -- 10.1 Introduction -- 10.2 Sustainable Development in Agroecosystem -- 10.3 Integrated Bio-cycle Farming System -- 10.4 Life Cycle Assessment</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.5 Biowastes Management -- 10.6 Bioenergy and Biogas Management -- 10.7 Agricultural Bioeconomy -- 10.8 Conclusion -- References -- 11: Biopesticides for Pest Management -- 11.1 Introduction -- 11.2 Biopesticides: Global and Indian Perspective -- 11.3 Categories of Biopesticides -- 11.4 Biopesticides Derived from Bacteria -- 11.4.1 Mode of Action of Bacillus thuringiensis -- 11.4.2 Advantages of Bacterial Biopesticides -- 11.4.3 Disadvantages of Microbial Insecticides -- 11.5 Viruses as Biopesticides -- 11.5.1 Mode of Action of Viruses -- 11.5.2 Steps Involved in the Preparation of NPV and CPV -- 11.5.3 Advantages of Viral Biopesticides -- 11.5.4 Disadvantages of Viral Biopesticides -- 11.6 Fungi as Biopesticides -- 11.6.1 Mode of Action of Fungi-Based Biopesticides -- 11.6.2 Advantages of Fungi-Based Biopesticides -- 11.6.3 Disadvantages of Fungi-Based Biopesticides -- 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides -- 11.7.1 Mode of Action of EPN -- 11.7.2 Advantages of EPN -- 11.7.3 Disadvantages of EPN -- 11.8 Protozoans as Biopesticides -- 11.8.1 Mode of Action of Protozoans -- 11.9 Natural Enemies of Pests as Biocontrol Agents -- 11.9.1 Advantages of Parasitoids in Biological Pest Management -- 11.9.2 Disadvantages of Parasitoids in Biological Pest Management -- 11.9.3 Advantages of Predators in Biological Pest Management -- 11.9.4 Disadvantages of Predators in Biological Pest Management -- 11.10 Biochemical Pesticides -- 11.10.1 Mode of Action -- 11.10.2 Semiochemicals -- 11.10.3 Advantages of Biochemical Pesticides -- 11.10.4 Disadvantages of Biochemical Pesticides -- 11.11 Plant-Incorporated Protectants -- 11.12 Biopesticides Formulations -- 11.12.1 Dry Powders -- 11.12.2 Liquid Formulations -- 11.12.3 Compatibility of Biopesticides -- 11.13 Factors Influencing the Success of Biocontrol Agent -- 11.14 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12: Renewable Energy for a Low-Carbon Future: Policy Perspectives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development-Government policy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Shachi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Ram</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Venkatramanan, V.</subfield><subfield code="t">Sustainable Bioeconomy</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2020</subfield><subfield code="z">9789811573200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033605200</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hnee/detail.action?docID=6386151</subfield><subfield code="l">BFE01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BFE_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048224467 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:39Z |
indexdate | 2024-07-10T09:32:29Z |
institution | BVB |
isbn | 9789811573217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033605200 |
oclc_num | 1206401926 |
open_access_boolean | |
owner | DE-Eb1 |
owner_facet | DE-Eb1 |
physical | 1 Online-Ressource (347 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE BFE_PDA_PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer Singapore Pte. Limited |
record_format | marc |
spelling | Venkatramanan, V. Verfasser aut Sustainable Bioeconomy Pathways to Sustainable Development Goals Singapore Springer Singapore Pte. Limited 2020 ©2021 1 Online-Ressource (347 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Exploring the Economics of the Circular Bioeconomy -- 1.1 Introduction -- 1.2 Circularity in Bioeconomy Systems -- 1.3 Optimal Rate of Circularity -- 1.4 Discussion -- 1.5 Conclusion -- References -- 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy -- 2.1 Introduction -- 2.2 Consumption and Economic Growth -- 2.3 Consumption and Sustainable Growth -- 2.4 Consumption, Economics, and Culture -- 2.5 Reconciling Economic Theory and Historical Context -- 2.6 Values and the Tragedy of the Commons -- 2.7 The Role of Culture in Averting and Promoting Tragedy -- 2.7.1 Indigenous Relationship with the Commons -- 2.7.2 Colonists Promotion of ''Tragedy'' -- 2.8 Perception of Resource Value, Market Outcomes, and Price -- 2.9 Competition and the Tragedy of the Commons -- 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium -- 2.11 Market Prices, Values, and Common Goods -- 2.12 Conscious Consumption and the Social Norm of Sustainability -- 2.13 Conclusion -- References -- 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach -- 3.1 Introduction -- 3.2 Conceptual Framework -- 3.3 Sectors in the Ecuadorian Bioeconomy -- 3.3.1 The Ecuadorian Economic Structure -- 3.3.2 Selection of Bioeconomy Subsectors -- 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador -- 3.4.1 Input-Output Model (IOM) -- 3.4.2 General Equilibrium Model -- 3.4.3 Social Accounting Matrix -- 3.5 Comparative Analysis of the Models -- 3.6 Contribution to the Ecuadorian Bioeconomy -- 3.6.1 Labour and Salary -- 3.6.2 Production and Consumption -- 3.6.3 Growth and Taxes -- 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario 3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used -- 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides -- 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development -- 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion -- 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy -- 3.8 Conclusion -- References -- 4: Biobutanol Production from Agricultural Biomass -- 4.1 Introduction -- 4.2 Biobutanol -- 4.3 Agricultural Biomass -- 4.3.1 Availability of Biomass -- 4.3.2 Chemical Composition of Biomass -- 4.4 Biobutanol Production from Agricultural Biomass -- 4.4.1 Substrate Preparation -- 4.4.2 Medium Formulation -- 4.4.3 Microorganism and Inoculum Preparation -- 4.4.4 ABE Fermentation -- 4.4.5 Recovery -- 4.5 Conclusion -- References -- 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society -- 5.1 Introduction -- 5.2 Biowastes -- 5.2.1 Valorization of Biomass into Fuels and High Value Added Products -- 5.2.1.1 Anaerobic Digestion of Biomass -- 5.2.1.2 Bioalcohol Production from Biomass -- 5.2.1.3 Biodiesel Production from Biomass -- 5.2.1.4 Biohydrogen Production from Biomass -- 5.2.1.5 Bulk Chemicals from Biomass -- 5.2.2 Valorization of Food Waste into Chemicals and Fuels -- 5.2.2.1 Existing Methods of Management of Food Wastes -- 5.2.2.2 Fuels from Food Wastes -- Anaerobic Fermentation -- Extraction of Sugars from Food Wastes -- Biohydrogen -- Biomethane -- Biohythane -- Volatile Fatty Acids -- Bioethanol -- Biodiesel Production -- 5.2.2.3 Chemicals Production from Food Wastes -- 5.2.3 Industrial Wastes -- 5.3 Conclusion -- References 6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives -- 6.1 Introduction -- 6.2 Potential and Availability of Agro-Residues -- 6.3 Biorefinery Methods -- 6.3.1 Thermochemical Conversion Method -- 6.3.1.1 Gasification -- 6.3.1.2 Pyrolysis -- 6.3.1.3 Combustion -- 6.3.2 Biochemical Conversion Methods -- 6.3.2.1 Biomass Pretreatment -- 6.3.2.2 Fermentation Process -- 6.3.2.3 Anaerobic Digestion -- 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology -- 6.4 Biofuels Production from Agricultural Residues -- 6.4.1 Solid Biofuels -- 6.4.2 Liquid Biofuels -- 6.4.3 Gaseous Biofuels -- 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach -- 6.5.1 Valorization of Cellulose -- 6.5.2 Valorization of Hemicellulose -- 6.5.3 Valorization of Lignin -- 6.6 Challenges in Commercialization -- 6.7 Conclusion -- References -- 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds -- 7.1 Introduction -- 7.2 Flavourings and Fragrance Chemicals -- 7.3 Biotechnological Methods for Production of Flavours -- 7.3.1 Enzymatic Methods -- 7.3.2 Microbial Methods -- 7.3.2.1 Fruity and Floral Terpenes -- 7.3.2.2 Aromatic Compounds in Alcoholic Beverages -- 7.3.2.3 Esters -- 7.3.2.4 Ketones -- 7.3.2.5 Fruity Lactones -- 7.3.2.6 Phenolic Aldehydes -- 7.3.2.7 Grassy Aroma -- 7.3.2.8 Musk Aroma -- 7.3.2.9 Synthetic Biology -- 7.3.2.10 Metabolic Engineering -- 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds -- 7.3.2.12 Bioreactor Model -- 7.3.3 Plant Tissue Culture Methods -- 7.4 Sensory Evaluation of Flavour Compounds -- 7.5 Product Formulation/Delivery Systems of Flavours -- 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours -- 7.7 Conclusion -- References -- 8: Phytochemicals for the Management of Stored Product Insects 8.1 Introduction -- 8.2 Phytochemicals -- 8.3 Extraction Methods -- 8.3.1 Solvent Extraction Method -- 8.3.2 Microwave Assisted Extraction (MAE) -- 8.3.3 Ultrasound Assisted Extraction (UAE) -- 8.3.4 Supercritical Fluid Extraction (SFE) -- 8.3.5 Hydrodistillation -- 8.3.6 Soxhlet Extraction -- 8.3.7 Solid Phase Extraction (SPE) -- 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests -- 8.4.1 Area Preference Test -- 8.4.2 Feeding Preference Test -- 8.5 Analysis of Phytochemicals -- 8.5.1 IR Spectroscopy -- 8.5.2 UV Visible Spectroscopy -- 8.6 Insect Repellent Packaging -- 8.7 Constraints of Using Phytochemicals in Pest Management -- 8.8 Conclusion -- References -- 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... -- 9.1 Introduction -- 9.2 Aim and Objectives -- 9.3 Research Methodology -- 9.3.1 Research Design -- 9.3.2 Research Setting -- 9.3.3 Sampling -- 9.4 Data Collection -- 9.4.1 Quantitative Data Collection -- 9.4.2 Qualitative Data Collection -- 9.4.3 Data Analysis -- 9.5 Results and Discussion -- 9.5.1 The Contextualisation of IKS -- 9.5.2 Challenges of the IKS on Agricultural Practices -- 9.5.3 Benefits of the IKS on Agricultural Practice -- 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security -- 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation -- 9.8 IKS and Sustainable Agriculture Impact on Food Security -- 9.9 Initiatives for Sustainability of IKS in Agricultural Practices -- 9.10 Conclusion -- Web Links -- References -- 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System -- 10.1 Introduction -- 10.2 Sustainable Development in Agroecosystem -- 10.3 Integrated Bio-cycle Farming System -- 10.4 Life Cycle Assessment 10.5 Biowastes Management -- 10.6 Bioenergy and Biogas Management -- 10.7 Agricultural Bioeconomy -- 10.8 Conclusion -- References -- 11: Biopesticides for Pest Management -- 11.1 Introduction -- 11.2 Biopesticides: Global and Indian Perspective -- 11.3 Categories of Biopesticides -- 11.4 Biopesticides Derived from Bacteria -- 11.4.1 Mode of Action of Bacillus thuringiensis -- 11.4.2 Advantages of Bacterial Biopesticides -- 11.4.3 Disadvantages of Microbial Insecticides -- 11.5 Viruses as Biopesticides -- 11.5.1 Mode of Action of Viruses -- 11.5.2 Steps Involved in the Preparation of NPV and CPV -- 11.5.3 Advantages of Viral Biopesticides -- 11.5.4 Disadvantages of Viral Biopesticides -- 11.6 Fungi as Biopesticides -- 11.6.1 Mode of Action of Fungi-Based Biopesticides -- 11.6.2 Advantages of Fungi-Based Biopesticides -- 11.6.3 Disadvantages of Fungi-Based Biopesticides -- 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides -- 11.7.1 Mode of Action of EPN -- 11.7.2 Advantages of EPN -- 11.7.3 Disadvantages of EPN -- 11.8 Protozoans as Biopesticides -- 11.8.1 Mode of Action of Protozoans -- 11.9 Natural Enemies of Pests as Biocontrol Agents -- 11.9.1 Advantages of Parasitoids in Biological Pest Management -- 11.9.2 Disadvantages of Parasitoids in Biological Pest Management -- 11.9.3 Advantages of Predators in Biological Pest Management -- 11.9.4 Disadvantages of Predators in Biological Pest Management -- 11.10 Biochemical Pesticides -- 11.10.1 Mode of Action -- 11.10.2 Semiochemicals -- 11.10.3 Advantages of Biochemical Pesticides -- 11.10.4 Disadvantages of Biochemical Pesticides -- 11.11 Plant-Incorporated Protectants -- 11.12 Biopesticides Formulations -- 11.12.1 Dry Powders -- 11.12.2 Liquid Formulations -- 11.12.3 Compatibility of Biopesticides -- 11.13 Factors Influencing the Success of Biocontrol Agent -- 11.14 Conclusion -- References 12: Renewable Energy for a Low-Carbon Future: Policy Perspectives Sustainable development Sustainable development-Government policy Shah, Shachi Sonstige oth Prasad, Ram Sonstige oth Erscheint auch als Druck-Ausgabe Venkatramanan, V. Sustainable Bioeconomy Singapore : Springer Singapore Pte. Limited,c2020 9789811573200 |
spellingShingle | Venkatramanan, V. Sustainable Bioeconomy Pathways to Sustainable Development Goals Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Exploring the Economics of the Circular Bioeconomy -- 1.1 Introduction -- 1.2 Circularity in Bioeconomy Systems -- 1.3 Optimal Rate of Circularity -- 1.4 Discussion -- 1.5 Conclusion -- References -- 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy -- 2.1 Introduction -- 2.2 Consumption and Economic Growth -- 2.3 Consumption and Sustainable Growth -- 2.4 Consumption, Economics, and Culture -- 2.5 Reconciling Economic Theory and Historical Context -- 2.6 Values and the Tragedy of the Commons -- 2.7 The Role of Culture in Averting and Promoting Tragedy -- 2.7.1 Indigenous Relationship with the Commons -- 2.7.2 Colonists Promotion of ''Tragedy'' -- 2.8 Perception of Resource Value, Market Outcomes, and Price -- 2.9 Competition and the Tragedy of the Commons -- 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium -- 2.11 Market Prices, Values, and Common Goods -- 2.12 Conscious Consumption and the Social Norm of Sustainability -- 2.13 Conclusion -- References -- 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach -- 3.1 Introduction -- 3.2 Conceptual Framework -- 3.3 Sectors in the Ecuadorian Bioeconomy -- 3.3.1 The Ecuadorian Economic Structure -- 3.3.2 Selection of Bioeconomy Subsectors -- 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador -- 3.4.1 Input-Output Model (IOM) -- 3.4.2 General Equilibrium Model -- 3.4.3 Social Accounting Matrix -- 3.5 Comparative Analysis of the Models -- 3.6 Contribution to the Ecuadorian Bioeconomy -- 3.6.1 Labour and Salary -- 3.6.2 Production and Consumption -- 3.6.3 Growth and Taxes -- 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario 3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used -- 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides -- 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development -- 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion -- 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy -- 3.8 Conclusion -- References -- 4: Biobutanol Production from Agricultural Biomass -- 4.1 Introduction -- 4.2 Biobutanol -- 4.3 Agricultural Biomass -- 4.3.1 Availability of Biomass -- 4.3.2 Chemical Composition of Biomass -- 4.4 Biobutanol Production from Agricultural Biomass -- 4.4.1 Substrate Preparation -- 4.4.2 Medium Formulation -- 4.4.3 Microorganism and Inoculum Preparation -- 4.4.4 ABE Fermentation -- 4.4.5 Recovery -- 4.5 Conclusion -- References -- 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society -- 5.1 Introduction -- 5.2 Biowastes -- 5.2.1 Valorization of Biomass into Fuels and High Value Added Products -- 5.2.1.1 Anaerobic Digestion of Biomass -- 5.2.1.2 Bioalcohol Production from Biomass -- 5.2.1.3 Biodiesel Production from Biomass -- 5.2.1.4 Biohydrogen Production from Biomass -- 5.2.1.5 Bulk Chemicals from Biomass -- 5.2.2 Valorization of Food Waste into Chemicals and Fuels -- 5.2.2.1 Existing Methods of Management of Food Wastes -- 5.2.2.2 Fuels from Food Wastes -- Anaerobic Fermentation -- Extraction of Sugars from Food Wastes -- Biohydrogen -- Biomethane -- Biohythane -- Volatile Fatty Acids -- Bioethanol -- Biodiesel Production -- 5.2.2.3 Chemicals Production from Food Wastes -- 5.2.3 Industrial Wastes -- 5.3 Conclusion -- References 6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives -- 6.1 Introduction -- 6.2 Potential and Availability of Agro-Residues -- 6.3 Biorefinery Methods -- 6.3.1 Thermochemical Conversion Method -- 6.3.1.1 Gasification -- 6.3.1.2 Pyrolysis -- 6.3.1.3 Combustion -- 6.3.2 Biochemical Conversion Methods -- 6.3.2.1 Biomass Pretreatment -- 6.3.2.2 Fermentation Process -- 6.3.2.3 Anaerobic Digestion -- 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology -- 6.4 Biofuels Production from Agricultural Residues -- 6.4.1 Solid Biofuels -- 6.4.2 Liquid Biofuels -- 6.4.3 Gaseous Biofuels -- 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach -- 6.5.1 Valorization of Cellulose -- 6.5.2 Valorization of Hemicellulose -- 6.5.3 Valorization of Lignin -- 6.6 Challenges in Commercialization -- 6.7 Conclusion -- References -- 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds -- 7.1 Introduction -- 7.2 Flavourings and Fragrance Chemicals -- 7.3 Biotechnological Methods for Production of Flavours -- 7.3.1 Enzymatic Methods -- 7.3.2 Microbial Methods -- 7.3.2.1 Fruity and Floral Terpenes -- 7.3.2.2 Aromatic Compounds in Alcoholic Beverages -- 7.3.2.3 Esters -- 7.3.2.4 Ketones -- 7.3.2.5 Fruity Lactones -- 7.3.2.6 Phenolic Aldehydes -- 7.3.2.7 Grassy Aroma -- 7.3.2.8 Musk Aroma -- 7.3.2.9 Synthetic Biology -- 7.3.2.10 Metabolic Engineering -- 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds -- 7.3.2.12 Bioreactor Model -- 7.3.3 Plant Tissue Culture Methods -- 7.4 Sensory Evaluation of Flavour Compounds -- 7.5 Product Formulation/Delivery Systems of Flavours -- 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours -- 7.7 Conclusion -- References -- 8: Phytochemicals for the Management of Stored Product Insects 8.1 Introduction -- 8.2 Phytochemicals -- 8.3 Extraction Methods -- 8.3.1 Solvent Extraction Method -- 8.3.2 Microwave Assisted Extraction (MAE) -- 8.3.3 Ultrasound Assisted Extraction (UAE) -- 8.3.4 Supercritical Fluid Extraction (SFE) -- 8.3.5 Hydrodistillation -- 8.3.6 Soxhlet Extraction -- 8.3.7 Solid Phase Extraction (SPE) -- 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests -- 8.4.1 Area Preference Test -- 8.4.2 Feeding Preference Test -- 8.5 Analysis of Phytochemicals -- 8.5.1 IR Spectroscopy -- 8.5.2 UV Visible Spectroscopy -- 8.6 Insect Repellent Packaging -- 8.7 Constraints of Using Phytochemicals in Pest Management -- 8.8 Conclusion -- References -- 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... -- 9.1 Introduction -- 9.2 Aim and Objectives -- 9.3 Research Methodology -- 9.3.1 Research Design -- 9.3.2 Research Setting -- 9.3.3 Sampling -- 9.4 Data Collection -- 9.4.1 Quantitative Data Collection -- 9.4.2 Qualitative Data Collection -- 9.4.3 Data Analysis -- 9.5 Results and Discussion -- 9.5.1 The Contextualisation of IKS -- 9.5.2 Challenges of the IKS on Agricultural Practices -- 9.5.3 Benefits of the IKS on Agricultural Practice -- 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security -- 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation -- 9.8 IKS and Sustainable Agriculture Impact on Food Security -- 9.9 Initiatives for Sustainability of IKS in Agricultural Practices -- 9.10 Conclusion -- Web Links -- References -- 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System -- 10.1 Introduction -- 10.2 Sustainable Development in Agroecosystem -- 10.3 Integrated Bio-cycle Farming System -- 10.4 Life Cycle Assessment 10.5 Biowastes Management -- 10.6 Bioenergy and Biogas Management -- 10.7 Agricultural Bioeconomy -- 10.8 Conclusion -- References -- 11: Biopesticides for Pest Management -- 11.1 Introduction -- 11.2 Biopesticides: Global and Indian Perspective -- 11.3 Categories of Biopesticides -- 11.4 Biopesticides Derived from Bacteria -- 11.4.1 Mode of Action of Bacillus thuringiensis -- 11.4.2 Advantages of Bacterial Biopesticides -- 11.4.3 Disadvantages of Microbial Insecticides -- 11.5 Viruses as Biopesticides -- 11.5.1 Mode of Action of Viruses -- 11.5.2 Steps Involved in the Preparation of NPV and CPV -- 11.5.3 Advantages of Viral Biopesticides -- 11.5.4 Disadvantages of Viral Biopesticides -- 11.6 Fungi as Biopesticides -- 11.6.1 Mode of Action of Fungi-Based Biopesticides -- 11.6.2 Advantages of Fungi-Based Biopesticides -- 11.6.3 Disadvantages of Fungi-Based Biopesticides -- 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides -- 11.7.1 Mode of Action of EPN -- 11.7.2 Advantages of EPN -- 11.7.3 Disadvantages of EPN -- 11.8 Protozoans as Biopesticides -- 11.8.1 Mode of Action of Protozoans -- 11.9 Natural Enemies of Pests as Biocontrol Agents -- 11.9.1 Advantages of Parasitoids in Biological Pest Management -- 11.9.2 Disadvantages of Parasitoids in Biological Pest Management -- 11.9.3 Advantages of Predators in Biological Pest Management -- 11.9.4 Disadvantages of Predators in Biological Pest Management -- 11.10 Biochemical Pesticides -- 11.10.1 Mode of Action -- 11.10.2 Semiochemicals -- 11.10.3 Advantages of Biochemical Pesticides -- 11.10.4 Disadvantages of Biochemical Pesticides -- 11.11 Plant-Incorporated Protectants -- 11.12 Biopesticides Formulations -- 11.12.1 Dry Powders -- 11.12.2 Liquid Formulations -- 11.12.3 Compatibility of Biopesticides -- 11.13 Factors Influencing the Success of Biocontrol Agent -- 11.14 Conclusion -- References 12: Renewable Energy for a Low-Carbon Future: Policy Perspectives Sustainable development Sustainable development-Government policy |
title | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_auth | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_exact_search | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_exact_search_txtP | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_full | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_fullStr | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_full_unstemmed | Sustainable Bioeconomy Pathways to Sustainable Development Goals |
title_short | Sustainable Bioeconomy |
title_sort | sustainable bioeconomy pathways to sustainable development goals |
title_sub | Pathways to Sustainable Development Goals |
topic | Sustainable development Sustainable development-Government policy |
topic_facet | Sustainable development Sustainable development-Government policy |
work_keys_str_mv | AT venkatramananv sustainablebioeconomypathwaystosustainabledevelopmentgoals AT shahshachi sustainablebioeconomypathwaystosustainabledevelopmentgoals AT prasadram sustainablebioeconomypathwaystosustainabledevelopmentgoals |