Advances in Air Conditioning Technologies: Improving Energy Efficiency
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer Singapore Pte. Limited
2020
|
Schriftenreihe: | Green Energy and Technology Ser
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (313 Seiten) |
ISBN: | 9789811584770 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048224341 | ||
003 | DE-604 | ||
005 | 20230607 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9789811584770 |9 978-981-1584-77-0 | ||
035 | |a (ZDB-30-PQE)EBC6380973 | ||
035 | |a (ZDB-30-PAD)EBC6380973 | ||
035 | |a (ZDB-89-EBL)EBL6380973 | ||
035 | |a (OCoLC)1231611289 | ||
035 | |a (DE-599)BVBBV048224341 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 333.7 | |
100 | 1 | |a Kian Jon, Chua |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advances in Air Conditioning Technologies |b Improving Energy Efficiency |
264 | 1 | |a Singapore |b Springer Singapore Pte. Limited |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (313 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Green Energy and Technology Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Contents -- 1 Present State of Cooling, Energy Consumption and Sustainability -- 1.1 Introduction -- 1.2 Building Comfortable Zone -- 1.3 Air-Conditioning Market -- 1.4 Energy Consumed by the Air-Conditioning Systems -- 1.5 Cooling Degree Days (CDDs) -- 1.6 CO2 and GHG Emission from Air-Conditioning Systems -- 1.7 Future Roadmap -- 1.8 Conclusions -- References -- 2 Future of Air Conditioning -- 2.1 Introduction -- 2.2 Absorption/Adsorption Chillers -- 2.3 Dew-Point Evaporative Cooling Systems -- 2.4 Solid-Based Desiccant Dehumidification -- 2.5 Liquid-Based Desiccant Dehumidification -- 2.5.1 Adiabatic Liquid-Desiccant Dehumidification Systems -- 2.5.2 Internally Cooled Liquid-Desiccant Dehumidification Systems -- 2.6 Membrane-Based Air Dehumidification -- 2.6.1 Membrane Materials -- 2.7 Conclusions -- References -- 3 Dew-Point Evaporative Cooling Systems -- 3.1 Introduction -- 3.2 Principle and Features of the Dew-Point Evaporative Cooling -- 3.3 Types of Dew-Point Evaporative Coolers -- 3.4 Analytical Models -- 3.4.1 Cross-Flow Dew-Point Evaporative Cooler -- 3.4.2 Counter-Flow Dew-Point Evaporative Cooler -- 3.4.3 Modified LMTD Model -- 3.5 Experimental Investigations -- 3.6 Industrial Status of Dew-Point Evaporative Air Coolers -- 3.7 Future Research Direction -- 3.8 Conclusions -- References -- 4 Adsorbent-Coated Heat and Mass Exchanger -- 4.1 Introduction -- 4.2 Adsorbents -- 4.2.1 Silica Gel -- 4.2.2 Zeolites -- 4.2.3 Polyvinyl Alcohol -- 4.2.4 Superabsorbent Polymer -- 4.2.5 Metal-Organic Framework (MOF) -- 4.3 Solid Adsorbent Dehumidification Systems -- 4.3.1 Fixed-Bed Dehumidifier -- 4.3.2 Rotary Wheel Dehumidifiers -- 4.3.3 Adsorbent-Coated Heat and Mass Exchanger -- 4.4 Binders -- 4.4.1 Adhesive Ability -- 4.4.2 Influence on the Adsorption Uptake -- 4.4.3 Heat Transfer Performance | |
505 | 8 | |a 4.5 Adsorbent Coating Techniques -- 4.5.1 Dip Coating -- 4.5.2 Electrostatic Spray Coating -- 4.5.3 Direct Synthesis -- 4.6 Dynamic Performance of Adsorbent Coated Heat and Mass Exchangers -- 4.6.1 Average Moisture Removal Capacity -- 4.6.2 Thermal Coefficient of Performance -- 4.7 Parametric Study of ACHMEs -- 4.7.1 Effect of Moisture Content of Air -- 4.7.2 Effect of Inlet Air Dry Bulb Temperature -- 4.7.3 Effect of Face Velocity of Exchanger -- 4.7.4 Effect of Cooling Water Temperature -- 4.7.5 Effect of Regeneration Temperature -- 4.7.6 Effect of Cycle Time -- 4.8 Hybrid Applications of Heat and Mass Exchangers -- 4.8.1 ACHMEs Coupled with Solar Thermal System -- 4.8.2 Multi-bed ACHME System -- 4.8.3 Adsorbent-Coated Direct Expansion System -- 4.8.4 ACHMEs Coupled with Adsorption Chiller -- 4.9 Conclusions -- References -- 5 Liquid Desiccant Air-Conditioning Systems -- 5.1 Introduction -- 5.2 Principles and Features of the Liquid Desiccant Air-Conditioning Systems -- 5.3 Liquid Desiccants Solutions -- 5.3.1 Single Desiccant Solutions -- 5.3.2 Solution of Mixed Desiccants -- 5.4 Packing Materials -- 5.5 Theoretical Study on Liquid Desiccant Dehumidification Systems -- 5.6 Development of the Theoretical Model -- 5.7 Commonly Used Performance Indices -- 5.8 Performance of Dehumidifiers -- 5.8.1 Direct Contact Dehumidifiers -- 5.8.2 Membrane-Based Dehumidifiers -- 5.9 Liquid Desiccant Air-Conditioning Systems -- 5.10 Future Research Opportunities -- 5.11 Conclusions -- References -- 6 Membrane Air Dehumidification -- 6.1 Introduction -- 6.2 Fundamental Principles of Membrane Dehumidification -- 6.3 Membrane Material Types -- 6.3.1 Polymer Membranes -- 6.3.2 Composite Membranes -- 6.3.3 Zeolite Membranes -- 6.3.4 Liquid Membrane -- 6.4 Membrane Configurations -- 6.5 Membrane Dehumidification Flow Organization -- 6.6 Performance Evaluation | |
505 | 8 | |a 6.7 Future Challenges and Direction -- 6.8 Conclusions -- References -- 7 Dissipative Losses in Cooling Cycles -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Accounting for Losses -- 7.3.1 Mechanical Vapour Compression Chiller -- 7.3.2 Absorption Chiller -- 7.3.3 Adsorption Chiller -- 7.3.4 Indirect Evaporative Cooler -- 7.4 Specific Entropy Generation -- 7.5 Conclusions -- References -- 8 Efficacy Comparison for Cooling Cycles -- 8.1 Introduction -- 8.2 Energy Efficiency Measurement -- 8.3 Energy Classification of Air Conditioners -- 8.4 Sample Calculations for Conventional Chiller Performance -- 8.5 Performance Evaluation of Indirect Evaporative Coolers -- 8.6 Performance Comparison -- 8.7 Conclusions -- References -- 9 Thermo-Economic Analysis for Cooling Cycles -- 9.1 Introduction -- 9.2 Economic Model -- 9.3 Economic Data -- 9.4 Levelized Costs of Cooling Systems -- 9.4.1 Base Case -- 9.4.2 Effect of Initial Costs -- 9.4.3 Effect of Energy Efficiency -- 9.4.4 Chiller Selection -- 9.5 Conclusions -- References | |
650 | 4 | |a Energy consumption | |
650 | 4 | |a Building construction | |
650 | 4 | |a Environmental management | |
700 | 1 | |a Islam, Raisul |e Sonstige |4 oth | |
700 | 1 | |a Kim Choon, Ng |e Sonstige |4 oth | |
700 | 1 | |a Shahzad, Muhammad Wakil |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kian Jon, Chua |t Advances in Air Conditioning Technologies |d Singapore : Springer Singapore Pte. Limited,c2020 |z 9789811584763 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033605074 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6380973 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184006402506752 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kian Jon, Chua |
author_facet | Kian Jon, Chua |
author_role | aut |
author_sort | Kian Jon, Chua |
author_variant | j c k jc jck |
building | Verbundindex |
bvnumber | BV048224341 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- 1 Present State of Cooling, Energy Consumption and Sustainability -- 1.1 Introduction -- 1.2 Building Comfortable Zone -- 1.3 Air-Conditioning Market -- 1.4 Energy Consumed by the Air-Conditioning Systems -- 1.5 Cooling Degree Days (CDDs) -- 1.6 CO2 and GHG Emission from Air-Conditioning Systems -- 1.7 Future Roadmap -- 1.8 Conclusions -- References -- 2 Future of Air Conditioning -- 2.1 Introduction -- 2.2 Absorption/Adsorption Chillers -- 2.3 Dew-Point Evaporative Cooling Systems -- 2.4 Solid-Based Desiccant Dehumidification -- 2.5 Liquid-Based Desiccant Dehumidification -- 2.5.1 Adiabatic Liquid-Desiccant Dehumidification Systems -- 2.5.2 Internally Cooled Liquid-Desiccant Dehumidification Systems -- 2.6 Membrane-Based Air Dehumidification -- 2.6.1 Membrane Materials -- 2.7 Conclusions -- References -- 3 Dew-Point Evaporative Cooling Systems -- 3.1 Introduction -- 3.2 Principle and Features of the Dew-Point Evaporative Cooling -- 3.3 Types of Dew-Point Evaporative Coolers -- 3.4 Analytical Models -- 3.4.1 Cross-Flow Dew-Point Evaporative Cooler -- 3.4.2 Counter-Flow Dew-Point Evaporative Cooler -- 3.4.3 Modified LMTD Model -- 3.5 Experimental Investigations -- 3.6 Industrial Status of Dew-Point Evaporative Air Coolers -- 3.7 Future Research Direction -- 3.8 Conclusions -- References -- 4 Adsorbent-Coated Heat and Mass Exchanger -- 4.1 Introduction -- 4.2 Adsorbents -- 4.2.1 Silica Gel -- 4.2.2 Zeolites -- 4.2.3 Polyvinyl Alcohol -- 4.2.4 Superabsorbent Polymer -- 4.2.5 Metal-Organic Framework (MOF) -- 4.3 Solid Adsorbent Dehumidification Systems -- 4.3.1 Fixed-Bed Dehumidifier -- 4.3.2 Rotary Wheel Dehumidifiers -- 4.3.3 Adsorbent-Coated Heat and Mass Exchanger -- 4.4 Binders -- 4.4.1 Adhesive Ability -- 4.4.2 Influence on the Adsorption Uptake -- 4.4.3 Heat Transfer Performance 4.5 Adsorbent Coating Techniques -- 4.5.1 Dip Coating -- 4.5.2 Electrostatic Spray Coating -- 4.5.3 Direct Synthesis -- 4.6 Dynamic Performance of Adsorbent Coated Heat and Mass Exchangers -- 4.6.1 Average Moisture Removal Capacity -- 4.6.2 Thermal Coefficient of Performance -- 4.7 Parametric Study of ACHMEs -- 4.7.1 Effect of Moisture Content of Air -- 4.7.2 Effect of Inlet Air Dry Bulb Temperature -- 4.7.3 Effect of Face Velocity of Exchanger -- 4.7.4 Effect of Cooling Water Temperature -- 4.7.5 Effect of Regeneration Temperature -- 4.7.6 Effect of Cycle Time -- 4.8 Hybrid Applications of Heat and Mass Exchangers -- 4.8.1 ACHMEs Coupled with Solar Thermal System -- 4.8.2 Multi-bed ACHME System -- 4.8.3 Adsorbent-Coated Direct Expansion System -- 4.8.4 ACHMEs Coupled with Adsorption Chiller -- 4.9 Conclusions -- References -- 5 Liquid Desiccant Air-Conditioning Systems -- 5.1 Introduction -- 5.2 Principles and Features of the Liquid Desiccant Air-Conditioning Systems -- 5.3 Liquid Desiccants Solutions -- 5.3.1 Single Desiccant Solutions -- 5.3.2 Solution of Mixed Desiccants -- 5.4 Packing Materials -- 5.5 Theoretical Study on Liquid Desiccant Dehumidification Systems -- 5.6 Development of the Theoretical Model -- 5.7 Commonly Used Performance Indices -- 5.8 Performance of Dehumidifiers -- 5.8.1 Direct Contact Dehumidifiers -- 5.8.2 Membrane-Based Dehumidifiers -- 5.9 Liquid Desiccant Air-Conditioning Systems -- 5.10 Future Research Opportunities -- 5.11 Conclusions -- References -- 6 Membrane Air Dehumidification -- 6.1 Introduction -- 6.2 Fundamental Principles of Membrane Dehumidification -- 6.3 Membrane Material Types -- 6.3.1 Polymer Membranes -- 6.3.2 Composite Membranes -- 6.3.3 Zeolite Membranes -- 6.3.4 Liquid Membrane -- 6.4 Membrane Configurations -- 6.5 Membrane Dehumidification Flow Organization -- 6.6 Performance Evaluation 6.7 Future Challenges and Direction -- 6.8 Conclusions -- References -- 7 Dissipative Losses in Cooling Cycles -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Accounting for Losses -- 7.3.1 Mechanical Vapour Compression Chiller -- 7.3.2 Absorption Chiller -- 7.3.3 Adsorption Chiller -- 7.3.4 Indirect Evaporative Cooler -- 7.4 Specific Entropy Generation -- 7.5 Conclusions -- References -- 8 Efficacy Comparison for Cooling Cycles -- 8.1 Introduction -- 8.2 Energy Efficiency Measurement -- 8.3 Energy Classification of Air Conditioners -- 8.4 Sample Calculations for Conventional Chiller Performance -- 8.5 Performance Evaluation of Indirect Evaporative Coolers -- 8.6 Performance Comparison -- 8.7 Conclusions -- References -- 9 Thermo-Economic Analysis for Cooling Cycles -- 9.1 Introduction -- 9.2 Economic Model -- 9.3 Economic Data -- 9.4 Levelized Costs of Cooling Systems -- 9.4.1 Base Case -- 9.4.2 Effect of Initial Costs -- 9.4.3 Effect of Energy Efficiency -- 9.4.4 Chiller Selection -- 9.5 Conclusions -- References |
ctrlnum | (ZDB-30-PQE)EBC6380973 (ZDB-30-PAD)EBC6380973 (ZDB-89-EBL)EBL6380973 (OCoLC)1231611289 (DE-599)BVBBV048224341 |
dewey-full | 333.7 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.7 |
dewey-search | 333.7 |
dewey-sort | 3333.7 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06512nmm a2200481zc 4500</leader><controlfield tag="001">BV048224341</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230607 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811584770</subfield><subfield code="9">978-981-1584-77-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6380973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6380973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6380973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231611289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048224341</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kian Jon, Chua</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in Air Conditioning Technologies</subfield><subfield code="b">Improving Energy Efficiency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer Singapore Pte. Limited</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (313 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Green Energy and Technology Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- 1 Present State of Cooling, Energy Consumption and Sustainability -- 1.1 Introduction -- 1.2 Building Comfortable Zone -- 1.3 Air-Conditioning Market -- 1.4 Energy Consumed by the Air-Conditioning Systems -- 1.5 Cooling Degree Days (CDDs) -- 1.6 CO2 and GHG Emission from Air-Conditioning Systems -- 1.7 Future Roadmap -- 1.8 Conclusions -- References -- 2 Future of Air Conditioning -- 2.1 Introduction -- 2.2 Absorption/Adsorption Chillers -- 2.3 Dew-Point Evaporative Cooling Systems -- 2.4 Solid-Based Desiccant Dehumidification -- 2.5 Liquid-Based Desiccant Dehumidification -- 2.5.1 Adiabatic Liquid-Desiccant Dehumidification Systems -- 2.5.2 Internally Cooled Liquid-Desiccant Dehumidification Systems -- 2.6 Membrane-Based Air Dehumidification -- 2.6.1 Membrane Materials -- 2.7 Conclusions -- References -- 3 Dew-Point Evaporative Cooling Systems -- 3.1 Introduction -- 3.2 Principle and Features of the Dew-Point Evaporative Cooling -- 3.3 Types of Dew-Point Evaporative Coolers -- 3.4 Analytical Models -- 3.4.1 Cross-Flow Dew-Point Evaporative Cooler -- 3.4.2 Counter-Flow Dew-Point Evaporative Cooler -- 3.4.3 Modified LMTD Model -- 3.5 Experimental Investigations -- 3.6 Industrial Status of Dew-Point Evaporative Air Coolers -- 3.7 Future Research Direction -- 3.8 Conclusions -- References -- 4 Adsorbent-Coated Heat and Mass Exchanger -- 4.1 Introduction -- 4.2 Adsorbents -- 4.2.1 Silica Gel -- 4.2.2 Zeolites -- 4.2.3 Polyvinyl Alcohol -- 4.2.4 Superabsorbent Polymer -- 4.2.5 Metal-Organic Framework (MOF) -- 4.3 Solid Adsorbent Dehumidification Systems -- 4.3.1 Fixed-Bed Dehumidifier -- 4.3.2 Rotary Wheel Dehumidifiers -- 4.3.3 Adsorbent-Coated Heat and Mass Exchanger -- 4.4 Binders -- 4.4.1 Adhesive Ability -- 4.4.2 Influence on the Adsorption Uptake -- 4.4.3 Heat Transfer Performance</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 Adsorbent Coating Techniques -- 4.5.1 Dip Coating -- 4.5.2 Electrostatic Spray Coating -- 4.5.3 Direct Synthesis -- 4.6 Dynamic Performance of Adsorbent Coated Heat and Mass Exchangers -- 4.6.1 Average Moisture Removal Capacity -- 4.6.2 Thermal Coefficient of Performance -- 4.7 Parametric Study of ACHMEs -- 4.7.1 Effect of Moisture Content of Air -- 4.7.2 Effect of Inlet Air Dry Bulb Temperature -- 4.7.3 Effect of Face Velocity of Exchanger -- 4.7.4 Effect of Cooling Water Temperature -- 4.7.5 Effect of Regeneration Temperature -- 4.7.6 Effect of Cycle Time -- 4.8 Hybrid Applications of Heat and Mass Exchangers -- 4.8.1 ACHMEs Coupled with Solar Thermal System -- 4.8.2 Multi-bed ACHME System -- 4.8.3 Adsorbent-Coated Direct Expansion System -- 4.8.4 ACHMEs Coupled with Adsorption Chiller -- 4.9 Conclusions -- References -- 5 Liquid Desiccant Air-Conditioning Systems -- 5.1 Introduction -- 5.2 Principles and Features of the Liquid Desiccant Air-Conditioning Systems -- 5.3 Liquid Desiccants Solutions -- 5.3.1 Single Desiccant Solutions -- 5.3.2 Solution of Mixed Desiccants -- 5.4 Packing Materials -- 5.5 Theoretical Study on Liquid Desiccant Dehumidification Systems -- 5.6 Development of the Theoretical Model -- 5.7 Commonly Used Performance Indices -- 5.8 Performance of Dehumidifiers -- 5.8.1 Direct Contact Dehumidifiers -- 5.8.2 Membrane-Based Dehumidifiers -- 5.9 Liquid Desiccant Air-Conditioning Systems -- 5.10 Future Research Opportunities -- 5.11 Conclusions -- References -- 6 Membrane Air Dehumidification -- 6.1 Introduction -- 6.2 Fundamental Principles of Membrane Dehumidification -- 6.3 Membrane Material Types -- 6.3.1 Polymer Membranes -- 6.3.2 Composite Membranes -- 6.3.3 Zeolite Membranes -- 6.3.4 Liquid Membrane -- 6.4 Membrane Configurations -- 6.5 Membrane Dehumidification Flow Organization -- 6.6 Performance Evaluation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.7 Future Challenges and Direction -- 6.8 Conclusions -- References -- 7 Dissipative Losses in Cooling Cycles -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Accounting for Losses -- 7.3.1 Mechanical Vapour Compression Chiller -- 7.3.2 Absorption Chiller -- 7.3.3 Adsorption Chiller -- 7.3.4 Indirect Evaporative Cooler -- 7.4 Specific Entropy Generation -- 7.5 Conclusions -- References -- 8 Efficacy Comparison for Cooling Cycles -- 8.1 Introduction -- 8.2 Energy Efficiency Measurement -- 8.3 Energy Classification of Air Conditioners -- 8.4 Sample Calculations for Conventional Chiller Performance -- 8.5 Performance Evaluation of Indirect Evaporative Coolers -- 8.6 Performance Comparison -- 8.7 Conclusions -- References -- 9 Thermo-Economic Analysis for Cooling Cycles -- 9.1 Introduction -- 9.2 Economic Model -- 9.3 Economic Data -- 9.4 Levelized Costs of Cooling Systems -- 9.4.1 Base Case -- 9.4.2 Effect of Initial Costs -- 9.4.3 Effect of Energy Efficiency -- 9.4.4 Chiller Selection -- 9.5 Conclusions -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Islam, Raisul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim Choon, Ng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahzad, Muhammad Wakil</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kian Jon, Chua</subfield><subfield code="t">Advances in Air Conditioning Technologies</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2020</subfield><subfield code="z">9789811584763</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033605074</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6380973</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048224341 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:39Z |
indexdate | 2024-07-10T09:32:28Z |
institution | BVB |
isbn | 9789811584770 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033605074 |
oclc_num | 1231611289 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (313 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer Singapore Pte. Limited |
record_format | marc |
series2 | Green Energy and Technology Ser |
spelling | Kian Jon, Chua Verfasser aut Advances in Air Conditioning Technologies Improving Energy Efficiency Singapore Springer Singapore Pte. Limited 2020 ©2021 1 Online-Ressource (313 Seiten) txt rdacontent c rdamedia cr rdacarrier Green Energy and Technology Ser Description based on publisher supplied metadata and other sources Intro -- Preface -- Contents -- 1 Present State of Cooling, Energy Consumption and Sustainability -- 1.1 Introduction -- 1.2 Building Comfortable Zone -- 1.3 Air-Conditioning Market -- 1.4 Energy Consumed by the Air-Conditioning Systems -- 1.5 Cooling Degree Days (CDDs) -- 1.6 CO2 and GHG Emission from Air-Conditioning Systems -- 1.7 Future Roadmap -- 1.8 Conclusions -- References -- 2 Future of Air Conditioning -- 2.1 Introduction -- 2.2 Absorption/Adsorption Chillers -- 2.3 Dew-Point Evaporative Cooling Systems -- 2.4 Solid-Based Desiccant Dehumidification -- 2.5 Liquid-Based Desiccant Dehumidification -- 2.5.1 Adiabatic Liquid-Desiccant Dehumidification Systems -- 2.5.2 Internally Cooled Liquid-Desiccant Dehumidification Systems -- 2.6 Membrane-Based Air Dehumidification -- 2.6.1 Membrane Materials -- 2.7 Conclusions -- References -- 3 Dew-Point Evaporative Cooling Systems -- 3.1 Introduction -- 3.2 Principle and Features of the Dew-Point Evaporative Cooling -- 3.3 Types of Dew-Point Evaporative Coolers -- 3.4 Analytical Models -- 3.4.1 Cross-Flow Dew-Point Evaporative Cooler -- 3.4.2 Counter-Flow Dew-Point Evaporative Cooler -- 3.4.3 Modified LMTD Model -- 3.5 Experimental Investigations -- 3.6 Industrial Status of Dew-Point Evaporative Air Coolers -- 3.7 Future Research Direction -- 3.8 Conclusions -- References -- 4 Adsorbent-Coated Heat and Mass Exchanger -- 4.1 Introduction -- 4.2 Adsorbents -- 4.2.1 Silica Gel -- 4.2.2 Zeolites -- 4.2.3 Polyvinyl Alcohol -- 4.2.4 Superabsorbent Polymer -- 4.2.5 Metal-Organic Framework (MOF) -- 4.3 Solid Adsorbent Dehumidification Systems -- 4.3.1 Fixed-Bed Dehumidifier -- 4.3.2 Rotary Wheel Dehumidifiers -- 4.3.3 Adsorbent-Coated Heat and Mass Exchanger -- 4.4 Binders -- 4.4.1 Adhesive Ability -- 4.4.2 Influence on the Adsorption Uptake -- 4.4.3 Heat Transfer Performance 4.5 Adsorbent Coating Techniques -- 4.5.1 Dip Coating -- 4.5.2 Electrostatic Spray Coating -- 4.5.3 Direct Synthesis -- 4.6 Dynamic Performance of Adsorbent Coated Heat and Mass Exchangers -- 4.6.1 Average Moisture Removal Capacity -- 4.6.2 Thermal Coefficient of Performance -- 4.7 Parametric Study of ACHMEs -- 4.7.1 Effect of Moisture Content of Air -- 4.7.2 Effect of Inlet Air Dry Bulb Temperature -- 4.7.3 Effect of Face Velocity of Exchanger -- 4.7.4 Effect of Cooling Water Temperature -- 4.7.5 Effect of Regeneration Temperature -- 4.7.6 Effect of Cycle Time -- 4.8 Hybrid Applications of Heat and Mass Exchangers -- 4.8.1 ACHMEs Coupled with Solar Thermal System -- 4.8.2 Multi-bed ACHME System -- 4.8.3 Adsorbent-Coated Direct Expansion System -- 4.8.4 ACHMEs Coupled with Adsorption Chiller -- 4.9 Conclusions -- References -- 5 Liquid Desiccant Air-Conditioning Systems -- 5.1 Introduction -- 5.2 Principles and Features of the Liquid Desiccant Air-Conditioning Systems -- 5.3 Liquid Desiccants Solutions -- 5.3.1 Single Desiccant Solutions -- 5.3.2 Solution of Mixed Desiccants -- 5.4 Packing Materials -- 5.5 Theoretical Study on Liquid Desiccant Dehumidification Systems -- 5.6 Development of the Theoretical Model -- 5.7 Commonly Used Performance Indices -- 5.8 Performance of Dehumidifiers -- 5.8.1 Direct Contact Dehumidifiers -- 5.8.2 Membrane-Based Dehumidifiers -- 5.9 Liquid Desiccant Air-Conditioning Systems -- 5.10 Future Research Opportunities -- 5.11 Conclusions -- References -- 6 Membrane Air Dehumidification -- 6.1 Introduction -- 6.2 Fundamental Principles of Membrane Dehumidification -- 6.3 Membrane Material Types -- 6.3.1 Polymer Membranes -- 6.3.2 Composite Membranes -- 6.3.3 Zeolite Membranes -- 6.3.4 Liquid Membrane -- 6.4 Membrane Configurations -- 6.5 Membrane Dehumidification Flow Organization -- 6.6 Performance Evaluation 6.7 Future Challenges and Direction -- 6.8 Conclusions -- References -- 7 Dissipative Losses in Cooling Cycles -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Accounting for Losses -- 7.3.1 Mechanical Vapour Compression Chiller -- 7.3.2 Absorption Chiller -- 7.3.3 Adsorption Chiller -- 7.3.4 Indirect Evaporative Cooler -- 7.4 Specific Entropy Generation -- 7.5 Conclusions -- References -- 8 Efficacy Comparison for Cooling Cycles -- 8.1 Introduction -- 8.2 Energy Efficiency Measurement -- 8.3 Energy Classification of Air Conditioners -- 8.4 Sample Calculations for Conventional Chiller Performance -- 8.5 Performance Evaluation of Indirect Evaporative Coolers -- 8.6 Performance Comparison -- 8.7 Conclusions -- References -- 9 Thermo-Economic Analysis for Cooling Cycles -- 9.1 Introduction -- 9.2 Economic Model -- 9.3 Economic Data -- 9.4 Levelized Costs of Cooling Systems -- 9.4.1 Base Case -- 9.4.2 Effect of Initial Costs -- 9.4.3 Effect of Energy Efficiency -- 9.4.4 Chiller Selection -- 9.5 Conclusions -- References Energy consumption Building construction Environmental management Islam, Raisul Sonstige oth Kim Choon, Ng Sonstige oth Shahzad, Muhammad Wakil Sonstige oth Erscheint auch als Druck-Ausgabe Kian Jon, Chua Advances in Air Conditioning Technologies Singapore : Springer Singapore Pte. Limited,c2020 9789811584763 |
spellingShingle | Kian Jon, Chua Advances in Air Conditioning Technologies Improving Energy Efficiency Intro -- Preface -- Contents -- 1 Present State of Cooling, Energy Consumption and Sustainability -- 1.1 Introduction -- 1.2 Building Comfortable Zone -- 1.3 Air-Conditioning Market -- 1.4 Energy Consumed by the Air-Conditioning Systems -- 1.5 Cooling Degree Days (CDDs) -- 1.6 CO2 and GHG Emission from Air-Conditioning Systems -- 1.7 Future Roadmap -- 1.8 Conclusions -- References -- 2 Future of Air Conditioning -- 2.1 Introduction -- 2.2 Absorption/Adsorption Chillers -- 2.3 Dew-Point Evaporative Cooling Systems -- 2.4 Solid-Based Desiccant Dehumidification -- 2.5 Liquid-Based Desiccant Dehumidification -- 2.5.1 Adiabatic Liquid-Desiccant Dehumidification Systems -- 2.5.2 Internally Cooled Liquid-Desiccant Dehumidification Systems -- 2.6 Membrane-Based Air Dehumidification -- 2.6.1 Membrane Materials -- 2.7 Conclusions -- References -- 3 Dew-Point Evaporative Cooling Systems -- 3.1 Introduction -- 3.2 Principle and Features of the Dew-Point Evaporative Cooling -- 3.3 Types of Dew-Point Evaporative Coolers -- 3.4 Analytical Models -- 3.4.1 Cross-Flow Dew-Point Evaporative Cooler -- 3.4.2 Counter-Flow Dew-Point Evaporative Cooler -- 3.4.3 Modified LMTD Model -- 3.5 Experimental Investigations -- 3.6 Industrial Status of Dew-Point Evaporative Air Coolers -- 3.7 Future Research Direction -- 3.8 Conclusions -- References -- 4 Adsorbent-Coated Heat and Mass Exchanger -- 4.1 Introduction -- 4.2 Adsorbents -- 4.2.1 Silica Gel -- 4.2.2 Zeolites -- 4.2.3 Polyvinyl Alcohol -- 4.2.4 Superabsorbent Polymer -- 4.2.5 Metal-Organic Framework (MOF) -- 4.3 Solid Adsorbent Dehumidification Systems -- 4.3.1 Fixed-Bed Dehumidifier -- 4.3.2 Rotary Wheel Dehumidifiers -- 4.3.3 Adsorbent-Coated Heat and Mass Exchanger -- 4.4 Binders -- 4.4.1 Adhesive Ability -- 4.4.2 Influence on the Adsorption Uptake -- 4.4.3 Heat Transfer Performance 4.5 Adsorbent Coating Techniques -- 4.5.1 Dip Coating -- 4.5.2 Electrostatic Spray Coating -- 4.5.3 Direct Synthesis -- 4.6 Dynamic Performance of Adsorbent Coated Heat and Mass Exchangers -- 4.6.1 Average Moisture Removal Capacity -- 4.6.2 Thermal Coefficient of Performance -- 4.7 Parametric Study of ACHMEs -- 4.7.1 Effect of Moisture Content of Air -- 4.7.2 Effect of Inlet Air Dry Bulb Temperature -- 4.7.3 Effect of Face Velocity of Exchanger -- 4.7.4 Effect of Cooling Water Temperature -- 4.7.5 Effect of Regeneration Temperature -- 4.7.6 Effect of Cycle Time -- 4.8 Hybrid Applications of Heat and Mass Exchangers -- 4.8.1 ACHMEs Coupled with Solar Thermal System -- 4.8.2 Multi-bed ACHME System -- 4.8.3 Adsorbent-Coated Direct Expansion System -- 4.8.4 ACHMEs Coupled with Adsorption Chiller -- 4.9 Conclusions -- References -- 5 Liquid Desiccant Air-Conditioning Systems -- 5.1 Introduction -- 5.2 Principles and Features of the Liquid Desiccant Air-Conditioning Systems -- 5.3 Liquid Desiccants Solutions -- 5.3.1 Single Desiccant Solutions -- 5.3.2 Solution of Mixed Desiccants -- 5.4 Packing Materials -- 5.5 Theoretical Study on Liquid Desiccant Dehumidification Systems -- 5.6 Development of the Theoretical Model -- 5.7 Commonly Used Performance Indices -- 5.8 Performance of Dehumidifiers -- 5.8.1 Direct Contact Dehumidifiers -- 5.8.2 Membrane-Based Dehumidifiers -- 5.9 Liquid Desiccant Air-Conditioning Systems -- 5.10 Future Research Opportunities -- 5.11 Conclusions -- References -- 6 Membrane Air Dehumidification -- 6.1 Introduction -- 6.2 Fundamental Principles of Membrane Dehumidification -- 6.3 Membrane Material Types -- 6.3.1 Polymer Membranes -- 6.3.2 Composite Membranes -- 6.3.3 Zeolite Membranes -- 6.3.4 Liquid Membrane -- 6.4 Membrane Configurations -- 6.5 Membrane Dehumidification Flow Organization -- 6.6 Performance Evaluation 6.7 Future Challenges and Direction -- 6.8 Conclusions -- References -- 7 Dissipative Losses in Cooling Cycles -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Accounting for Losses -- 7.3.1 Mechanical Vapour Compression Chiller -- 7.3.2 Absorption Chiller -- 7.3.3 Adsorption Chiller -- 7.3.4 Indirect Evaporative Cooler -- 7.4 Specific Entropy Generation -- 7.5 Conclusions -- References -- 8 Efficacy Comparison for Cooling Cycles -- 8.1 Introduction -- 8.2 Energy Efficiency Measurement -- 8.3 Energy Classification of Air Conditioners -- 8.4 Sample Calculations for Conventional Chiller Performance -- 8.5 Performance Evaluation of Indirect Evaporative Coolers -- 8.6 Performance Comparison -- 8.7 Conclusions -- References -- 9 Thermo-Economic Analysis for Cooling Cycles -- 9.1 Introduction -- 9.2 Economic Model -- 9.3 Economic Data -- 9.4 Levelized Costs of Cooling Systems -- 9.4.1 Base Case -- 9.4.2 Effect of Initial Costs -- 9.4.3 Effect of Energy Efficiency -- 9.4.4 Chiller Selection -- 9.5 Conclusions -- References Energy consumption Building construction Environmental management |
title | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_auth | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_exact_search | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_exact_search_txtP | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_full | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_fullStr | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_full_unstemmed | Advances in Air Conditioning Technologies Improving Energy Efficiency |
title_short | Advances in Air Conditioning Technologies |
title_sort | advances in air conditioning technologies improving energy efficiency |
title_sub | Improving Energy Efficiency |
topic | Energy consumption Building construction Environmental management |
topic_facet | Energy consumption Building construction Environmental management |
work_keys_str_mv | AT kianjonchua advancesinairconditioningtechnologiesimprovingenergyefficiency AT islamraisul advancesinairconditioningtechnologiesimprovingenergyefficiency AT kimchoonng advancesinairconditioningtechnologiesimprovingenergyefficiency AT shahzadmuhammadwakil advancesinairconditioningtechnologiesimprovingenergyefficiency |