Data Analytics for Organisational Development: Unleashing the Potential of Your Data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2021
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (364 pages) |
ISBN: | 9781119758310 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048223326 | ||
003 | DE-604 | ||
005 | 20221031 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119758310 |9 978-1-119-75831-0 | ||
035 | |a (ZDB-30-PQE)EBC6686361 | ||
035 | |a (ZDB-30-PAD)EBC6686361 | ||
035 | |a (ZDB-89-EBL)EBL6686361 | ||
035 | |a (OCoLC)1263026409 | ||
035 | |a (DE-599)BVBBV048223326 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Kaufmann, Uwe H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data Analytics for Organisational Development |b Unleashing the Potential of Your Data |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (364 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- About the Authors -- Introduction: Why Data Analytics is Important -- Why This Book Has Been Written -- How This Book Is Structured -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- What Tools Are Used -- Activating and Using MS Excel's Analysis ToolPak -- Downloading and Using MS Power BI -- Downloading and Using R and R Studio -- What Is Provided -- Which Cases Should I Study? -- References -- List of Figures and Tables -- Chapter 1 Introduction to Data Analytics and Data Science -- Components of Data Analytics -- Big Data and its Relationship to Data Analytics -- Data Analytics - The Foundation for Data Science and Artificial Intelligence -- Practice -- Phases of Data Analytics -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Story Telling -- Deploying Analytics Tools -- Practice -- Competencies of a Data Scientist -- Competencies Needed in Data Analytics Phases -- Key Roles of Today's Managers and Leaders -- References -- List of Figures and Tables -- Chapter 2 Customer Domain - Customer Analytics -- Why Customer Analytics? -- Listen to the Voice of Your Existing Customers -- Understanding Customer Expectations -- Studying the Complete Customer Experience -- Designing Customer Surveys -- Determine the Purpose of your Survey -- Use Proven Questionnaires -- Use Proven Scales -- Test Your Survey Questionnaire -- Decide on the Distribution of the Questionnaire -- Select an Appropriate Timing for your Survey -- Begin with the End in Mind -- Some More Considerations -- Conclusion -- Practice -- Case 1: Great, We Have Improved . . . or Not? -- The Problem with Sampling -- Understanding Confidence Intervals -- Means Are Lies -- Business Question | |
505 | 8 | |a Data Collection -- Data Processing -- Data Analysis -- Business Decision -- Analytical Storytelling -- What If We Had All The Data? -- Deploying Analytics Tools -- Practice -- Case 2: What Drives our Patient Satisfaction? -- Patient Satisfaction in an Outpatient Clinic -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Storytelling -- Practice -- Deploying Analytics Tools -- Case 3: How to Create a Patient Satisfaction Dashboard -- Deciding about Metrics to Illustrate our Clinic Performance -- Building a Clinic Dashboard with MS Power BI and R -- Using MS Power BI for Analytical Storytelling -- Conclusion -- Practice -- References -- List of Figures andTables -- Chapter 3 Process Domain - Operations Analytics -- Why Operations Analytics? -- Dimensions of Operations Analytics -- Process Design Using Analytics -- Defining Measures for Analytics -- Process Management Using Analytics -- Process Improvement Using Analytics - The Power of DMAIC -- Roles and Deployment of Operations Analytics -- Conclusion -- Practice Questions -- Case 4: Which Supplier has the Better Product Quality? -- Business Question -- Data Acquisition -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 5: Why Does Finance Pay Our Vendors Late? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 6: Why Are We Wasting Blood? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- References -- List of Figures and Tables -- Chapter 4 Workforce Domain - Workforce Analytics -- Why Workforce Analytics? -- Why has the topic "workforce analytics" developed into a priority? -- Dimensions of Workforce Analytics | |
505 | 8 | |a Putting Workforce Analytics into Practice -- Using Descriptive and Predictive Workforce Analytics in Workforce Planning -- Workforce Planning for Transactional Processes -- Workforce Planning for Less Transactional Processes -- Workforce Planning from the Workforce Perspective -- Getting the Intent Right -- a) Connect HR Data and Business Outcomes -- b) Determine Information Needed and Collect Data -- c) Analyse the Data -- d) Derive and Formulate a Business Answer - Tell a Story -- Workforce Analysts' Paradise is Employees' Nightmare - Managing the Change -- Summary -- Practice -- Case 7: Do We Have Enough People to Run Our Organisation? - Workforce Planning Inside-Out -- Data Acquisition and Data Wrangling -- Understanding the Demand Pattern -- Predicting a Potential Future Problem -- Understanding the Activity Pattern -- Planning the Workforce -- "Fighting Variation" -- Rethinking and Innovating the Process -- Conclusion -- Practice -- Deploying Analytics Tools -- Case 8: What Makes Our Staff Innovate? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision and Storytelling -- Deploying Analytics Tools -- Background -- Case 9: What Does Our Engagement Survey Result Mean? -- Why We Should not Trust this Data Easily -- Performing a Proper Data Analysis -- Making a Better Decision -- Practice -- Deploying Analytics Tools -- Case 10: What Drives Our Staff Out? - Logistic Regression for Prediction and Decision Making -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Summary -- Practice -- Deploying Analytics Tools -- References -- Table of Equations, Figures, Tables -- Chapter 5 Implementing Data Analytics for Organisational Development -- Making Better Decisions - Knowing the Risk of Being Wrong -- There is No Difference, and We Decide There Is None | |
505 | 8 | |a There is No Difference, and We Decide There Is One - Type I Error -- There Is a Difference, and We Decide There Is One -- There Is a Difference, but We Decide There Is None - Type II Error -- Making Better Decisions - Do not Trust Statistics Blindly -- Significant Difference Does Not Mean Important Difference -- A Non-Significant Difference Could Be Important for The Organisation -- Data Analytics Does Not Take Over Decision Making -- Ensuring the Success of Your Data Analytics Journey -- Steps for Implementing Data Analytics -- Ensuring the Management Walks and Talks Analytics -- Creating Excitement for Data Analytics and its Benefits -- Developing a Body of Knowledge - Start Small -- Using Analytics to Breakdown Silos -- Closing the Analytics Loop - Sustaining the Gains -- Calibrating Your Data Analytics Implementation -- Outlook -- References -- List of Figures and Tables -- Materials for Download -- Index -- EULA. | |
650 | 0 | 7 | |a Organisationsentwicklung |0 (DE-588)4126887-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkzeug |0 (DE-588)4065596-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Organisationsentwicklung |0 (DE-588)4126887-8 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Werkzeug |0 (DE-588)4065596-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tan, Amy B. C. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kaufmann, Uwe H. |t Data Analytics for Organisational Development |d Newark : John Wiley & Sons, Incorporated,c2021 |z 9781119758334 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033604059 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6686361 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184005079203840 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kaufmann, Uwe H. |
author_facet | Kaufmann, Uwe H. |
author_role | aut |
author_sort | Kaufmann, Uwe H. |
author_variant | u h k uh uhk |
building | Verbundindex |
bvnumber | BV048223326 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- About the Authors -- Introduction: Why Data Analytics is Important -- Why This Book Has Been Written -- How This Book Is Structured -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- What Tools Are Used -- Activating and Using MS Excel's Analysis ToolPak -- Downloading and Using MS Power BI -- Downloading and Using R and R Studio -- What Is Provided -- Which Cases Should I Study? -- References -- List of Figures and Tables -- Chapter 1 Introduction to Data Analytics and Data Science -- Components of Data Analytics -- Big Data and its Relationship to Data Analytics -- Data Analytics - The Foundation for Data Science and Artificial Intelligence -- Practice -- Phases of Data Analytics -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Story Telling -- Deploying Analytics Tools -- Practice -- Competencies of a Data Scientist -- Competencies Needed in Data Analytics Phases -- Key Roles of Today's Managers and Leaders -- References -- List of Figures and Tables -- Chapter 2 Customer Domain - Customer Analytics -- Why Customer Analytics? -- Listen to the Voice of Your Existing Customers -- Understanding Customer Expectations -- Studying the Complete Customer Experience -- Designing Customer Surveys -- Determine the Purpose of your Survey -- Use Proven Questionnaires -- Use Proven Scales -- Test Your Survey Questionnaire -- Decide on the Distribution of the Questionnaire -- Select an Appropriate Timing for your Survey -- Begin with the End in Mind -- Some More Considerations -- Conclusion -- Practice -- Case 1: Great, We Have Improved . . . or Not? -- The Problem with Sampling -- Understanding Confidence Intervals -- Means Are Lies -- Business Question Data Collection -- Data Processing -- Data Analysis -- Business Decision -- Analytical Storytelling -- What If We Had All The Data? -- Deploying Analytics Tools -- Practice -- Case 2: What Drives our Patient Satisfaction? -- Patient Satisfaction in an Outpatient Clinic -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Storytelling -- Practice -- Deploying Analytics Tools -- Case 3: How to Create a Patient Satisfaction Dashboard -- Deciding about Metrics to Illustrate our Clinic Performance -- Building a Clinic Dashboard with MS Power BI and R -- Using MS Power BI for Analytical Storytelling -- Conclusion -- Practice -- References -- List of Figures andTables -- Chapter 3 Process Domain - Operations Analytics -- Why Operations Analytics? -- Dimensions of Operations Analytics -- Process Design Using Analytics -- Defining Measures for Analytics -- Process Management Using Analytics -- Process Improvement Using Analytics - The Power of DMAIC -- Roles and Deployment of Operations Analytics -- Conclusion -- Practice Questions -- Case 4: Which Supplier has the Better Product Quality? -- Business Question -- Data Acquisition -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 5: Why Does Finance Pay Our Vendors Late? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 6: Why Are We Wasting Blood? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- References -- List of Figures and Tables -- Chapter 4 Workforce Domain - Workforce Analytics -- Why Workforce Analytics? -- Why has the topic "workforce analytics" developed into a priority? -- Dimensions of Workforce Analytics Putting Workforce Analytics into Practice -- Using Descriptive and Predictive Workforce Analytics in Workforce Planning -- Workforce Planning for Transactional Processes -- Workforce Planning for Less Transactional Processes -- Workforce Planning from the Workforce Perspective -- Getting the Intent Right -- a) Connect HR Data and Business Outcomes -- b) Determine Information Needed and Collect Data -- c) Analyse the Data -- d) Derive and Formulate a Business Answer - Tell a Story -- Workforce Analysts' Paradise is Employees' Nightmare - Managing the Change -- Summary -- Practice -- Case 7: Do We Have Enough People to Run Our Organisation? - Workforce Planning Inside-Out -- Data Acquisition and Data Wrangling -- Understanding the Demand Pattern -- Predicting a Potential Future Problem -- Understanding the Activity Pattern -- Planning the Workforce -- "Fighting Variation" -- Rethinking and Innovating the Process -- Conclusion -- Practice -- Deploying Analytics Tools -- Case 8: What Makes Our Staff Innovate? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision and Storytelling -- Deploying Analytics Tools -- Background -- Case 9: What Does Our Engagement Survey Result Mean? -- Why We Should not Trust this Data Easily -- Performing a Proper Data Analysis -- Making a Better Decision -- Practice -- Deploying Analytics Tools -- Case 10: What Drives Our Staff Out? - Logistic Regression for Prediction and Decision Making -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Summary -- Practice -- Deploying Analytics Tools -- References -- Table of Equations, Figures, Tables -- Chapter 5 Implementing Data Analytics for Organisational Development -- Making Better Decisions - Knowing the Risk of Being Wrong -- There is No Difference, and We Decide There Is None There is No Difference, and We Decide There Is One - Type I Error -- There Is a Difference, and We Decide There Is One -- There Is a Difference, but We Decide There Is None - Type II Error -- Making Better Decisions - Do not Trust Statistics Blindly -- Significant Difference Does Not Mean Important Difference -- A Non-Significant Difference Could Be Important for The Organisation -- Data Analytics Does Not Take Over Decision Making -- Ensuring the Success of Your Data Analytics Journey -- Steps for Implementing Data Analytics -- Ensuring the Management Walks and Talks Analytics -- Creating Excitement for Data Analytics and its Benefits -- Developing a Body of Knowledge - Start Small -- Using Analytics to Breakdown Silos -- Closing the Analytics Loop - Sustaining the Gains -- Calibrating Your Data Analytics Implementation -- Outlook -- References -- List of Figures and Tables -- Materials for Download -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6686361 (ZDB-30-PAD)EBC6686361 (ZDB-89-EBL)EBL6686361 (OCoLC)1263026409 (DE-599)BVBBV048223326 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08493nmm a2200493zc 4500</leader><controlfield tag="001">BV048223326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221031 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119758310</subfield><subfield code="9">978-1-119-75831-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6686361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6686361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6686361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1263026409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048223326</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaufmann, Uwe H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Analytics for Organisational Development</subfield><subfield code="b">Unleashing the Potential of Your Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (364 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- About the Authors -- Introduction: Why Data Analytics is Important -- Why This Book Has Been Written -- How This Book Is Structured -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- What Tools Are Used -- Activating and Using MS Excel's Analysis ToolPak -- Downloading and Using MS Power BI -- Downloading and Using R and R Studio -- What Is Provided -- Which Cases Should I Study? -- References -- List of Figures and Tables -- Chapter 1 Introduction to Data Analytics and Data Science -- Components of Data Analytics -- Big Data and its Relationship to Data Analytics -- Data Analytics - The Foundation for Data Science and Artificial Intelligence -- Practice -- Phases of Data Analytics -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Story Telling -- Deploying Analytics Tools -- Practice -- Competencies of a Data Scientist -- Competencies Needed in Data Analytics Phases -- Key Roles of Today's Managers and Leaders -- References -- List of Figures and Tables -- Chapter 2 Customer Domain - Customer Analytics -- Why Customer Analytics? -- Listen to the Voice of Your Existing Customers -- Understanding Customer Expectations -- Studying the Complete Customer Experience -- Designing Customer Surveys -- Determine the Purpose of your Survey -- Use Proven Questionnaires -- Use Proven Scales -- Test Your Survey Questionnaire -- Decide on the Distribution of the Questionnaire -- Select an Appropriate Timing for your Survey -- Begin with the End in Mind -- Some More Considerations -- Conclusion -- Practice -- Case 1: Great, We Have Improved . . . or Not? -- The Problem with Sampling -- Understanding Confidence Intervals -- Means Are Lies -- Business Question</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Collection -- Data Processing -- Data Analysis -- Business Decision -- Analytical Storytelling -- What If We Had All The Data? -- Deploying Analytics Tools -- Practice -- Case 2: What Drives our Patient Satisfaction? -- Patient Satisfaction in an Outpatient Clinic -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Storytelling -- Practice -- Deploying Analytics Tools -- Case 3: How to Create a Patient Satisfaction Dashboard -- Deciding about Metrics to Illustrate our Clinic Performance -- Building a Clinic Dashboard with MS Power BI and R -- Using MS Power BI for Analytical Storytelling -- Conclusion -- Practice -- References -- List of Figures andTables -- Chapter 3 Process Domain - Operations Analytics -- Why Operations Analytics? -- Dimensions of Operations Analytics -- Process Design Using Analytics -- Defining Measures for Analytics -- Process Management Using Analytics -- Process Improvement Using Analytics - The Power of DMAIC -- Roles and Deployment of Operations Analytics -- Conclusion -- Practice Questions -- Case 4: Which Supplier has the Better Product Quality? -- Business Question -- Data Acquisition -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 5: Why Does Finance Pay Our Vendors Late? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 6: Why Are We Wasting Blood? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- References -- List of Figures and Tables -- Chapter 4 Workforce Domain - Workforce Analytics -- Why Workforce Analytics? -- Why has the topic "workforce analytics" developed into a priority? -- Dimensions of Workforce Analytics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Putting Workforce Analytics into Practice -- Using Descriptive and Predictive Workforce Analytics in Workforce Planning -- Workforce Planning for Transactional Processes -- Workforce Planning for Less Transactional Processes -- Workforce Planning from the Workforce Perspective -- Getting the Intent Right -- a) Connect HR Data and Business Outcomes -- b) Determine Information Needed and Collect Data -- c) Analyse the Data -- d) Derive and Formulate a Business Answer - Tell a Story -- Workforce Analysts' Paradise is Employees' Nightmare - Managing the Change -- Summary -- Practice -- Case 7: Do We Have Enough People to Run Our Organisation? - Workforce Planning Inside-Out -- Data Acquisition and Data Wrangling -- Understanding the Demand Pattern -- Predicting a Potential Future Problem -- Understanding the Activity Pattern -- Planning the Workforce -- "Fighting Variation" -- Rethinking and Innovating the Process -- Conclusion -- Practice -- Deploying Analytics Tools -- Case 8: What Makes Our Staff Innovate? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision and Storytelling -- Deploying Analytics Tools -- Background -- Case 9: What Does Our Engagement Survey Result Mean? -- Why We Should not Trust this Data Easily -- Performing a Proper Data Analysis -- Making a Better Decision -- Practice -- Deploying Analytics Tools -- Case 10: What Drives Our Staff Out? - Logistic Regression for Prediction and Decision Making -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Summary -- Practice -- Deploying Analytics Tools -- References -- Table of Equations, Figures, Tables -- Chapter 5 Implementing Data Analytics for Organisational Development -- Making Better Decisions - Knowing the Risk of Being Wrong -- There is No Difference, and We Decide There Is None</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">There is No Difference, and We Decide There Is One - Type I Error -- There Is a Difference, and We Decide There Is One -- There Is a Difference, but We Decide There Is None - Type II Error -- Making Better Decisions - Do not Trust Statistics Blindly -- Significant Difference Does Not Mean Important Difference -- A Non-Significant Difference Could Be Important for The Organisation -- Data Analytics Does Not Take Over Decision Making -- Ensuring the Success of Your Data Analytics Journey -- Steps for Implementing Data Analytics -- Ensuring the Management Walks and Talks Analytics -- Creating Excitement for Data Analytics and its Benefits -- Developing a Body of Knowledge - Start Small -- Using Analytics to Breakdown Silos -- Closing the Analytics Loop - Sustaining the Gains -- Calibrating Your Data Analytics Implementation -- Outlook -- References -- List of Figures and Tables -- Materials for Download -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organisationsentwicklung</subfield><subfield code="0">(DE-588)4126887-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkzeug</subfield><subfield code="0">(DE-588)4065596-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Organisationsentwicklung</subfield><subfield code="0">(DE-588)4126887-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Werkzeug</subfield><subfield code="0">(DE-588)4065596-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Amy B. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kaufmann, Uwe H.</subfield><subfield code="t">Data Analytics for Organisational Development</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">9781119758334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033604059</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6686361</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048223326 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:38Z |
indexdate | 2024-07-10T09:32:27Z |
institution | BVB |
isbn | 9781119758310 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033604059 |
oclc_num | 1263026409 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (364 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Kaufmann, Uwe H. Verfasser aut Data Analytics for Organisational Development Unleashing the Potential of Your Data Newark John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (364 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- About the Authors -- Introduction: Why Data Analytics is Important -- Why This Book Has Been Written -- How This Book Is Structured -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- What Tools Are Used -- Activating and Using MS Excel's Analysis ToolPak -- Downloading and Using MS Power BI -- Downloading and Using R and R Studio -- What Is Provided -- Which Cases Should I Study? -- References -- List of Figures and Tables -- Chapter 1 Introduction to Data Analytics and Data Science -- Components of Data Analytics -- Big Data and its Relationship to Data Analytics -- Data Analytics - The Foundation for Data Science and Artificial Intelligence -- Practice -- Phases of Data Analytics -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Story Telling -- Deploying Analytics Tools -- Practice -- Competencies of a Data Scientist -- Competencies Needed in Data Analytics Phases -- Key Roles of Today's Managers and Leaders -- References -- List of Figures and Tables -- Chapter 2 Customer Domain - Customer Analytics -- Why Customer Analytics? -- Listen to the Voice of Your Existing Customers -- Understanding Customer Expectations -- Studying the Complete Customer Experience -- Designing Customer Surveys -- Determine the Purpose of your Survey -- Use Proven Questionnaires -- Use Proven Scales -- Test Your Survey Questionnaire -- Decide on the Distribution of the Questionnaire -- Select an Appropriate Timing for your Survey -- Begin with the End in Mind -- Some More Considerations -- Conclusion -- Practice -- Case 1: Great, We Have Improved . . . or Not? -- The Problem with Sampling -- Understanding Confidence Intervals -- Means Are Lies -- Business Question Data Collection -- Data Processing -- Data Analysis -- Business Decision -- Analytical Storytelling -- What If We Had All The Data? -- Deploying Analytics Tools -- Practice -- Case 2: What Drives our Patient Satisfaction? -- Patient Satisfaction in an Outpatient Clinic -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Storytelling -- Practice -- Deploying Analytics Tools -- Case 3: How to Create a Patient Satisfaction Dashboard -- Deciding about Metrics to Illustrate our Clinic Performance -- Building a Clinic Dashboard with MS Power BI and R -- Using MS Power BI for Analytical Storytelling -- Conclusion -- Practice -- References -- List of Figures andTables -- Chapter 3 Process Domain - Operations Analytics -- Why Operations Analytics? -- Dimensions of Operations Analytics -- Process Design Using Analytics -- Defining Measures for Analytics -- Process Management Using Analytics -- Process Improvement Using Analytics - The Power of DMAIC -- Roles and Deployment of Operations Analytics -- Conclusion -- Practice Questions -- Case 4: Which Supplier has the Better Product Quality? -- Business Question -- Data Acquisition -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 5: Why Does Finance Pay Our Vendors Late? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 6: Why Are We Wasting Blood? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- References -- List of Figures and Tables -- Chapter 4 Workforce Domain - Workforce Analytics -- Why Workforce Analytics? -- Why has the topic "workforce analytics" developed into a priority? -- Dimensions of Workforce Analytics Putting Workforce Analytics into Practice -- Using Descriptive and Predictive Workforce Analytics in Workforce Planning -- Workforce Planning for Transactional Processes -- Workforce Planning for Less Transactional Processes -- Workforce Planning from the Workforce Perspective -- Getting the Intent Right -- a) Connect HR Data and Business Outcomes -- b) Determine Information Needed and Collect Data -- c) Analyse the Data -- d) Derive and Formulate a Business Answer - Tell a Story -- Workforce Analysts' Paradise is Employees' Nightmare - Managing the Change -- Summary -- Practice -- Case 7: Do We Have Enough People to Run Our Organisation? - Workforce Planning Inside-Out -- Data Acquisition and Data Wrangling -- Understanding the Demand Pattern -- Predicting a Potential Future Problem -- Understanding the Activity Pattern -- Planning the Workforce -- "Fighting Variation" -- Rethinking and Innovating the Process -- Conclusion -- Practice -- Deploying Analytics Tools -- Case 8: What Makes Our Staff Innovate? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision and Storytelling -- Deploying Analytics Tools -- Background -- Case 9: What Does Our Engagement Survey Result Mean? -- Why We Should not Trust this Data Easily -- Performing a Proper Data Analysis -- Making a Better Decision -- Practice -- Deploying Analytics Tools -- Case 10: What Drives Our Staff Out? - Logistic Regression for Prediction and Decision Making -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Summary -- Practice -- Deploying Analytics Tools -- References -- Table of Equations, Figures, Tables -- Chapter 5 Implementing Data Analytics for Organisational Development -- Making Better Decisions - Knowing the Risk of Being Wrong -- There is No Difference, and We Decide There Is None There is No Difference, and We Decide There Is One - Type I Error -- There Is a Difference, and We Decide There Is One -- There Is a Difference, but We Decide There Is None - Type II Error -- Making Better Decisions - Do not Trust Statistics Blindly -- Significant Difference Does Not Mean Important Difference -- A Non-Significant Difference Could Be Important for The Organisation -- Data Analytics Does Not Take Over Decision Making -- Ensuring the Success of Your Data Analytics Journey -- Steps for Implementing Data Analytics -- Ensuring the Management Walks and Talks Analytics -- Creating Excitement for Data Analytics and its Benefits -- Developing a Body of Knowledge - Start Small -- Using Analytics to Breakdown Silos -- Closing the Analytics Loop - Sustaining the Gains -- Calibrating Your Data Analytics Implementation -- Outlook -- References -- List of Figures and Tables -- Materials for Download -- Index -- EULA. Organisationsentwicklung (DE-588)4126887-8 gnd rswk-swf Werkzeug (DE-588)4065596-9 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Organisationsentwicklung (DE-588)4126887-8 s Datenanalyse (DE-588)4123037-1 s Werkzeug (DE-588)4065596-9 s DE-604 Tan, Amy B. C. Sonstige oth Erscheint auch als Druck-Ausgabe Kaufmann, Uwe H. Data Analytics for Organisational Development Newark : John Wiley & Sons, Incorporated,c2021 9781119758334 |
spellingShingle | Kaufmann, Uwe H. Data Analytics for Organisational Development Unleashing the Potential of Your Data Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- About the Authors -- Introduction: Why Data Analytics is Important -- Why This Book Has Been Written -- How This Book Is Structured -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- What Tools Are Used -- Activating and Using MS Excel's Analysis ToolPak -- Downloading and Using MS Power BI -- Downloading and Using R and R Studio -- What Is Provided -- Which Cases Should I Study? -- References -- List of Figures and Tables -- Chapter 1 Introduction to Data Analytics and Data Science -- Components of Data Analytics -- Big Data and its Relationship to Data Analytics -- Data Analytics - The Foundation for Data Science and Artificial Intelligence -- Practice -- Phases of Data Analytics -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Story Telling -- Deploying Analytics Tools -- Practice -- Competencies of a Data Scientist -- Competencies Needed in Data Analytics Phases -- Key Roles of Today's Managers and Leaders -- References -- List of Figures and Tables -- Chapter 2 Customer Domain - Customer Analytics -- Why Customer Analytics? -- Listen to the Voice of Your Existing Customers -- Understanding Customer Expectations -- Studying the Complete Customer Experience -- Designing Customer Surveys -- Determine the Purpose of your Survey -- Use Proven Questionnaires -- Use Proven Scales -- Test Your Survey Questionnaire -- Decide on the Distribution of the Questionnaire -- Select an Appropriate Timing for your Survey -- Begin with the End in Mind -- Some More Considerations -- Conclusion -- Practice -- Case 1: Great, We Have Improved . . . or Not? -- The Problem with Sampling -- Understanding Confidence Intervals -- Means Are Lies -- Business Question Data Collection -- Data Processing -- Data Analysis -- Business Decision -- Analytical Storytelling -- What If We Had All The Data? -- Deploying Analytics Tools -- Practice -- Case 2: What Drives our Patient Satisfaction? -- Patient Satisfaction in an Outpatient Clinic -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Analytical Storytelling -- Practice -- Deploying Analytics Tools -- Case 3: How to Create a Patient Satisfaction Dashboard -- Deciding about Metrics to Illustrate our Clinic Performance -- Building a Clinic Dashboard with MS Power BI and R -- Using MS Power BI for Analytical Storytelling -- Conclusion -- Practice -- References -- List of Figures andTables -- Chapter 3 Process Domain - Operations Analytics -- Why Operations Analytics? -- Dimensions of Operations Analytics -- Process Design Using Analytics -- Defining Measures for Analytics -- Process Management Using Analytics -- Process Improvement Using Analytics - The Power of DMAIC -- Roles and Deployment of Operations Analytics -- Conclusion -- Practice Questions -- Case 4: Which Supplier has the Better Product Quality? -- Business Question -- Data Acquisition -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 5: Why Does Finance Pay Our Vendors Late? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- Case 6: Why Are We Wasting Blood? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Deploying Analytics Tools -- Practice -- References -- List of Figures and Tables -- Chapter 4 Workforce Domain - Workforce Analytics -- Why Workforce Analytics? -- Why has the topic "workforce analytics" developed into a priority? -- Dimensions of Workforce Analytics Putting Workforce Analytics into Practice -- Using Descriptive and Predictive Workforce Analytics in Workforce Planning -- Workforce Planning for Transactional Processes -- Workforce Planning for Less Transactional Processes -- Workforce Planning from the Workforce Perspective -- Getting the Intent Right -- a) Connect HR Data and Business Outcomes -- b) Determine Information Needed and Collect Data -- c) Analyse the Data -- d) Derive and Formulate a Business Answer - Tell a Story -- Workforce Analysts' Paradise is Employees' Nightmare - Managing the Change -- Summary -- Practice -- Case 7: Do We Have Enough People to Run Our Organisation? - Workforce Planning Inside-Out -- Data Acquisition and Data Wrangling -- Understanding the Demand Pattern -- Predicting a Potential Future Problem -- Understanding the Activity Pattern -- Planning the Workforce -- "Fighting Variation" -- Rethinking and Innovating the Process -- Conclusion -- Practice -- Deploying Analytics Tools -- Case 8: What Makes Our Staff Innovate? -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision and Storytelling -- Deploying Analytics Tools -- Background -- Case 9: What Does Our Engagement Survey Result Mean? -- Why We Should not Trust this Data Easily -- Performing a Proper Data Analysis -- Making a Better Decision -- Practice -- Deploying Analytics Tools -- Case 10: What Drives Our Staff Out? - Logistic Regression for Prediction and Decision Making -- Business Question -- Data Acquisition -- Data Preparation -- Data Analysis -- Business Decision -- Summary -- Practice -- Deploying Analytics Tools -- References -- Table of Equations, Figures, Tables -- Chapter 5 Implementing Data Analytics for Organisational Development -- Making Better Decisions - Knowing the Risk of Being Wrong -- There is No Difference, and We Decide There Is None There is No Difference, and We Decide There Is One - Type I Error -- There Is a Difference, and We Decide There Is One -- There Is a Difference, but We Decide There Is None - Type II Error -- Making Better Decisions - Do not Trust Statistics Blindly -- Significant Difference Does Not Mean Important Difference -- A Non-Significant Difference Could Be Important for The Organisation -- Data Analytics Does Not Take Over Decision Making -- Ensuring the Success of Your Data Analytics Journey -- Steps for Implementing Data Analytics -- Ensuring the Management Walks and Talks Analytics -- Creating Excitement for Data Analytics and its Benefits -- Developing a Body of Knowledge - Start Small -- Using Analytics to Breakdown Silos -- Closing the Analytics Loop - Sustaining the Gains -- Calibrating Your Data Analytics Implementation -- Outlook -- References -- List of Figures and Tables -- Materials for Download -- Index -- EULA. Organisationsentwicklung (DE-588)4126887-8 gnd Werkzeug (DE-588)4065596-9 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4126887-8 (DE-588)4065596-9 (DE-588)4123037-1 |
title | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_auth | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_exact_search | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_exact_search_txtP | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_full | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_fullStr | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_full_unstemmed | Data Analytics for Organisational Development Unleashing the Potential of Your Data |
title_short | Data Analytics for Organisational Development |
title_sort | data analytics for organisational development unleashing the potential of your data |
title_sub | Unleashing the Potential of Your Data |
topic | Organisationsentwicklung (DE-588)4126887-8 gnd Werkzeug (DE-588)4065596-9 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Organisationsentwicklung Werkzeug Datenanalyse |
work_keys_str_mv | AT kaufmannuweh dataanalyticsfororganisationaldevelopmentunleashingthepotentialofyourdata AT tanamybc dataanalyticsfororganisationaldevelopmentunleashingthepotentialofyourdata |