Group Decision and Negotiation: 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | Lecture Notes in Business Information Processing Ser.
v.388 |
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (212 pages) |
ISBN: | 9783030486419 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048223142 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030486419 |9 978-3-030-48641-9 | ||
035 | |a (ZDB-30-PQE)EBC6295305 | ||
035 | |a (ZDB-30-PAD)EBC6295305 | ||
035 | |a (ZDB-89-EBL)EBL6295305 | ||
035 | |a (OCoLC)1157525230 | ||
035 | |a (DE-599)BVBBV048223142 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 658.4036 | |
084 | |a QC 020 |0 (DE-625)141237: |2 rvk | ||
100 | 1 | |a Morais, Danielle Costa |e Verfasser |4 aut | |
245 | 1 | 0 | |a Group Decision and Negotiation |b 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (212 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Business Information Processing Ser. |v v.388 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Organization -- Contents -- Conflict Resolution -- Nash Stability in a Multi-objective Graph Model with Interval Preference Weights: Application to a US-China Trade Dispute -- Abstract -- 1 Introduction -- 2 Graph Model -- 2.1 Graph Model with Simple Preference -- 2.2 Graph Model with Multiple Objectives -- 3 Application: US-China Trade Dispute -- 3.1 Background of US-China Trade Dispute -- 3.2 Multi-objective Graph Model of US-China Trade Dispute -- 4 Multi-objective Graph Model with Interval Preference Weights -- 5 US-China Trade Dispute with Interval Preference -- 6 Conclusion -- References -- A Novel Conflict Resolution Model Based on the Composition of Probabilistic Preferences -- Abstract -- 1 Introduction -- 2 Composition of Probabilistic Preferences (CPP) -- 3 Conflict Resolution Model Based on Composition of Probabilistic Preferences (CRMCPP) -- 4 Numerical Example -- 5 Conclusion and Final Remarks -- References -- Analysis of Disputed Territories in the Barents Sea -- Abstract -- 1 Introduction -- 2 Data Description -- 3 A Model -- 3.1 Problem Statement -- 3.2 Utility Functions -- 3.3 Areas Allocation -- 4 Resolution Models -- 4.1 Allocation of Areas Regardless the Level of Interest in Areas of the Barents Sea -- 4.2 Allocation of Areas with Respect to the Level of Interest in Areas of the Barents Sea -- 4.3 Allocation of Areas to the Most Interested Country -- 5 Results -- 5.1 Fossil Fuels and Fish Resources Have the Same Importance (∝= 1) -- 5.2 Fossil Fuels Are Five Times More Important Than Fish Resources (∝ = 5) -- 5.3 Fossil Fuels Are Ten Times More Important Than Fish Resources (∝ = 10) -- 6 Conclusion -- Acknowledgements -- References -- A Novel Method for Eliminating Redundant Option Statements in the Graph Model for Conflict Resolution -- Abstract -- 1 Introduction -- 2 Option Prioritization in GMCR. | |
505 | 8 | |a 3 An Option Statement Reduction Method for Option Prioritization -- 4 Case Studies -- 5 Conclusions and Future Work -- References -- Alternatives vs. Time - Measuring the Force of Distinct Sources of Bargaining Power -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Empirical Study -- 3.1 Method -- 3.2 Results -- 4 Discussion -- References -- Preference Modeling for Group Decision and Negotiation -- Influence Across Agents and Issues in Combinatorial and Collective Decision-Making -- 1 Introduction -- 2 Related Works -- 2.1 How to Address Multiple Sources of Influence Among Agents in a Cardinal Approach -- 2.2 How to Address Multiple Sources of Influence Among Agents in an Ordinal Approach -- 2.3 From Social Choice Functions to Social Influence Functions -- 3 Multiple Sources of Influence Across Agents and Issues -- 4 Weighted Influence Across Agents and Issues -- 5 One Dominant Influence Across Agents and Issues -- 6 Discussion and Conclusion -- References -- A Characterization for Procedural Choice Based on Dichotomous Preferences Over Criteria -- Abstract -- 1 Introduction -- 2 Designing a Formal Model for PCBPC -- 3 Results -- 4 Discussion -- 5 Concluding Remarks -- References -- Influence Among Preferences and Its Transformation to Behaviors in Groups -- Abstract -- 1 Introduction -- 2 Influence on Preferences Among Agents and Its Transformation to Behaviors in Multi-agent Systems -- 2.1 Transformation from Preferences to Behaviors -- 2.2 Weighted and Signed Influence Among Preferences -- 3 An Example of Influence Among Preferences and Behaviors in Groups: Fertility Intention and Behavior in Families -- 4 From Individual Intention, to Individual Behavior and to Social Evolution: A New Approach for Demography -- 5 Mathematical Model: Variables Definition and Rules Design -- 5.1 Define Variables -- 5.2 Design Rules -- 6 Computer Model | |
505 | 8 | |a 7 Simulation Experiments and Results -- 8 Discussion, Conclusion and Future Work -- Acknowledgements -- References -- Manipulability of Majoritarian Procedures in Two-Dimensional Downsian Model -- Abstract -- 1 Manipulability Model -- 2 The Aggregation Procedures -- 3 Extended Preferences -- 4 The Scheme of Calculation -- 5 Calculation Results -- 6 Conclusion -- Acknowledgements -- References -- Intelligent Group Decision Making and Consensus Process -- PredictRV: A Prediction Based Strategy for Negotiations with Dynamically Changing Reservation Value -- 1 Introduction -- 1.1 Related Work -- 2 Static RV -- 2.1 Negotiation Model -- 2.2 Utility Generation for ONAC Algorithm -- 2.3 Utility Generation for Boulware Algorithm -- 3 Dynamic RV: The PredictRV Strategy -- 3.1 Negotiation Model -- 3.2 ONAC for Dynamic Reservation Values -- 3.3 Boulware for Dynamic Reservation Values -- 3.4 Illustrative Example -- 3.5 Steps of Strategy for PredictRV -- 3.6 Counter Learning -- 3.7 Bayesian Learning with Regression Analysis (BLRA) -- 3.8 LSTM Based Prediction -- 4 Example Continued -- 5 Experiments -- 5.1 Setup for the Experiments -- 5.2 Metrics -- 5.3 Fire Disaster Response -- 5.4 Meeting Scheduling Domain -- 5.5 Summary of the Experiments -- 6 Conclusions -- References -- Inferring Personality Types for Better Automated Negotiation -- 1 Introduction -- 2 Partially Observable Markov Decision Process Framework -- 2.1 Encoding a Negotiation Problem in the POMDP Framework -- 2.2 State Space Definition -- 2.3 Action and Observation Set -- 2.4 State Transition Function -- 2.5 Observation Function -- 2.6 Reward Function -- 2.7 Discount Factor -- 3 Input Generation for the POMDP Model -- 4 Evaluation of the POMDP Agent -- 4.1 Sanity Check Experiment -- 4.2 Reward Function Evaluation -- 4.3 Effect of Opponent Type Misclassification in Input Transcripts | |
505 | 8 | |a 5 Experiment Results -- 5.1 Generation of Negotiation Data -- 5.2 Opponent Personality Type Prediction -- 6 Conclusions -- References -- Decision Rule Aggregation Approach to Support Group Decision Making -- 1 Introduction -- 2 Background -- 2.1 Notations and Basic Assumptions -- 2.2 Rough Approximation -- 2.3 Decision Rules -- 3 Decision Rules Matching and Overlapping -- 3.1 Basic Definitions -- 3.2 Conditions Matching -- 3.3 Decision Rules Matching -- 3.4 Overlapping Decision Rules -- 4 Decision Rules Aggregation -- 4.1 Step 1: Transformation of Overlapping Decision Rules -- 4.2 Step 2: Elimination of Redundant Decision Rules -- 5 Application -- 6 Conclusion -- References -- Collaborative Decision Making Processes -- An Ontology for Collaborative Decision Making -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Collaborative Decision Making Process -- 2.2 Ontology Definition -- 2.3 Types of Ontologies -- 2.4 Ontology Engineering -- 2.5 Collaboration Engineering -- 3 Developing an Ontology for Collaborative Decision Making -- 3.1 Our Ontology Building -- 3.2 An Ontology for Collaborative Decision Making -- 4 Conclusion -- References -- Decidio: A Pilot Implementation and User Study of a Novel Decision-Support System -- 1 Introduction -- 2 Functionality of the Decidio Pilot Implementation -- 3 User Study -- 3.1 QUEST Workflow -- 3.2 User Activity Logs -- 4 Results -- 4.1 Tool Evaluation Survey -- 4.2 User Activity Logs -- 4.3 Personality Survey -- 5 Discussion -- 5.1 Observations Based on User Personalities -- 5.2 Limitations -- 5.3 Future Vision -- 6 Conclusion -- A Appendix -- A.1 Tool Evaluation Survey -- References -- Author Index | |
650 | 4 | |a Group decision making-Congresses | |
650 | 0 | 7 | |a Informationstechnik |0 (DE-588)4026926-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verhandlung |0 (DE-588)4062875-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operations Research |0 (DE-588)4043586-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppenentscheidung |0 (DE-588)4158442-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendungssoftware |0 (DE-588)4120906-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2020 |z Online |2 gnd-content | |
689 | 0 | 0 | |a Gruppenentscheidung |0 (DE-588)4158442-9 |D s |
689 | 0 | 1 | |a Verhandlung |0 (DE-588)4062875-9 |D s |
689 | 0 | 2 | |a Entscheidung bei Unsicherheit |0 (DE-588)4070864-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Anwendungssoftware |0 (DE-588)4120906-0 |D s |
689 | 1 | 1 | |a Operations Research |0 (DE-588)4043586-6 |D s |
689 | 1 | 2 | |a Informationstechnik |0 (DE-588)4026926-7 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Fang, Liping |e Sonstige |4 oth | |
700 | 1 | |a Horita, Masahide |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Morais, Danielle Costa |t Group Decision and Negotiation: a Multidisciplinary Perspective |d Cham : Springer International Publishing AG,c2020 |z 9783030486402 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033603875 |
Datensatz im Suchindex
_version_ | 1804184004916674560 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Morais, Danielle Costa |
author_facet | Morais, Danielle Costa |
author_role | aut |
author_sort | Morais, Danielle Costa |
author_variant | d c m dc dcm |
building | Verbundindex |
bvnumber | BV048223142 |
classification_rvk | QC 020 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Organization -- Contents -- Conflict Resolution -- Nash Stability in a Multi-objective Graph Model with Interval Preference Weights: Application to a US-China Trade Dispute -- Abstract -- 1 Introduction -- 2 Graph Model -- 2.1 Graph Model with Simple Preference -- 2.2 Graph Model with Multiple Objectives -- 3 Application: US-China Trade Dispute -- 3.1 Background of US-China Trade Dispute -- 3.2 Multi-objective Graph Model of US-China Trade Dispute -- 4 Multi-objective Graph Model with Interval Preference Weights -- 5 US-China Trade Dispute with Interval Preference -- 6 Conclusion -- References -- A Novel Conflict Resolution Model Based on the Composition of Probabilistic Preferences -- Abstract -- 1 Introduction -- 2 Composition of Probabilistic Preferences (CPP) -- 3 Conflict Resolution Model Based on Composition of Probabilistic Preferences (CRMCPP) -- 4 Numerical Example -- 5 Conclusion and Final Remarks -- References -- Analysis of Disputed Territories in the Barents Sea -- Abstract -- 1 Introduction -- 2 Data Description -- 3 A Model -- 3.1 Problem Statement -- 3.2 Utility Functions -- 3.3 Areas Allocation -- 4 Resolution Models -- 4.1 Allocation of Areas Regardless the Level of Interest in Areas of the Barents Sea -- 4.2 Allocation of Areas with Respect to the Level of Interest in Areas of the Barents Sea -- 4.3 Allocation of Areas to the Most Interested Country -- 5 Results -- 5.1 Fossil Fuels and Fish Resources Have the Same Importance (∝= 1) -- 5.2 Fossil Fuels Are Five Times More Important Than Fish Resources (∝ = 5) -- 5.3 Fossil Fuels Are Ten Times More Important Than Fish Resources (∝ = 10) -- 6 Conclusion -- Acknowledgements -- References -- A Novel Method for Eliminating Redundant Option Statements in the Graph Model for Conflict Resolution -- Abstract -- 1 Introduction -- 2 Option Prioritization in GMCR. 3 An Option Statement Reduction Method for Option Prioritization -- 4 Case Studies -- 5 Conclusions and Future Work -- References -- Alternatives vs. Time - Measuring the Force of Distinct Sources of Bargaining Power -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Empirical Study -- 3.1 Method -- 3.2 Results -- 4 Discussion -- References -- Preference Modeling for Group Decision and Negotiation -- Influence Across Agents and Issues in Combinatorial and Collective Decision-Making -- 1 Introduction -- 2 Related Works -- 2.1 How to Address Multiple Sources of Influence Among Agents in a Cardinal Approach -- 2.2 How to Address Multiple Sources of Influence Among Agents in an Ordinal Approach -- 2.3 From Social Choice Functions to Social Influence Functions -- 3 Multiple Sources of Influence Across Agents and Issues -- 4 Weighted Influence Across Agents and Issues -- 5 One Dominant Influence Across Agents and Issues -- 6 Discussion and Conclusion -- References -- A Characterization for Procedural Choice Based on Dichotomous Preferences Over Criteria -- Abstract -- 1 Introduction -- 2 Designing a Formal Model for PCBPC -- 3 Results -- 4 Discussion -- 5 Concluding Remarks -- References -- Influence Among Preferences and Its Transformation to Behaviors in Groups -- Abstract -- 1 Introduction -- 2 Influence on Preferences Among Agents and Its Transformation to Behaviors in Multi-agent Systems -- 2.1 Transformation from Preferences to Behaviors -- 2.2 Weighted and Signed Influence Among Preferences -- 3 An Example of Influence Among Preferences and Behaviors in Groups: Fertility Intention and Behavior in Families -- 4 From Individual Intention, to Individual Behavior and to Social Evolution: A New Approach for Demography -- 5 Mathematical Model: Variables Definition and Rules Design -- 5.1 Define Variables -- 5.2 Design Rules -- 6 Computer Model 7 Simulation Experiments and Results -- 8 Discussion, Conclusion and Future Work -- Acknowledgements -- References -- Manipulability of Majoritarian Procedures in Two-Dimensional Downsian Model -- Abstract -- 1 Manipulability Model -- 2 The Aggregation Procedures -- 3 Extended Preferences -- 4 The Scheme of Calculation -- 5 Calculation Results -- 6 Conclusion -- Acknowledgements -- References -- Intelligent Group Decision Making and Consensus Process -- PredictRV: A Prediction Based Strategy for Negotiations with Dynamically Changing Reservation Value -- 1 Introduction -- 1.1 Related Work -- 2 Static RV -- 2.1 Negotiation Model -- 2.2 Utility Generation for ONAC Algorithm -- 2.3 Utility Generation for Boulware Algorithm -- 3 Dynamic RV: The PredictRV Strategy -- 3.1 Negotiation Model -- 3.2 ONAC for Dynamic Reservation Values -- 3.3 Boulware for Dynamic Reservation Values -- 3.4 Illustrative Example -- 3.5 Steps of Strategy for PredictRV -- 3.6 Counter Learning -- 3.7 Bayesian Learning with Regression Analysis (BLRA) -- 3.8 LSTM Based Prediction -- 4 Example Continued -- 5 Experiments -- 5.1 Setup for the Experiments -- 5.2 Metrics -- 5.3 Fire Disaster Response -- 5.4 Meeting Scheduling Domain -- 5.5 Summary of the Experiments -- 6 Conclusions -- References -- Inferring Personality Types for Better Automated Negotiation -- 1 Introduction -- 2 Partially Observable Markov Decision Process Framework -- 2.1 Encoding a Negotiation Problem in the POMDP Framework -- 2.2 State Space Definition -- 2.3 Action and Observation Set -- 2.4 State Transition Function -- 2.5 Observation Function -- 2.6 Reward Function -- 2.7 Discount Factor -- 3 Input Generation for the POMDP Model -- 4 Evaluation of the POMDP Agent -- 4.1 Sanity Check Experiment -- 4.2 Reward Function Evaluation -- 4.3 Effect of Opponent Type Misclassification in Input Transcripts 5 Experiment Results -- 5.1 Generation of Negotiation Data -- 5.2 Opponent Personality Type Prediction -- 6 Conclusions -- References -- Decision Rule Aggregation Approach to Support Group Decision Making -- 1 Introduction -- 2 Background -- 2.1 Notations and Basic Assumptions -- 2.2 Rough Approximation -- 2.3 Decision Rules -- 3 Decision Rules Matching and Overlapping -- 3.1 Basic Definitions -- 3.2 Conditions Matching -- 3.3 Decision Rules Matching -- 3.4 Overlapping Decision Rules -- 4 Decision Rules Aggregation -- 4.1 Step 1: Transformation of Overlapping Decision Rules -- 4.2 Step 2: Elimination of Redundant Decision Rules -- 5 Application -- 6 Conclusion -- References -- Collaborative Decision Making Processes -- An Ontology for Collaborative Decision Making -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Collaborative Decision Making Process -- 2.2 Ontology Definition -- 2.3 Types of Ontologies -- 2.4 Ontology Engineering -- 2.5 Collaboration Engineering -- 3 Developing an Ontology for Collaborative Decision Making -- 3.1 Our Ontology Building -- 3.2 An Ontology for Collaborative Decision Making -- 4 Conclusion -- References -- Decidio: A Pilot Implementation and User Study of a Novel Decision-Support System -- 1 Introduction -- 2 Functionality of the Decidio Pilot Implementation -- 3 User Study -- 3.1 QUEST Workflow -- 3.2 User Activity Logs -- 4 Results -- 4.1 Tool Evaluation Survey -- 4.2 User Activity Logs -- 4.3 Personality Survey -- 5 Discussion -- 5.1 Observations Based on User Personalities -- 5.2 Limitations -- 5.3 Future Vision -- 6 Conclusion -- A Appendix -- A.1 Tool Evaluation Survey -- References -- Author Index |
ctrlnum | (ZDB-30-PQE)EBC6295305 (ZDB-30-PAD)EBC6295305 (ZDB-89-EBL)EBL6295305 (OCoLC)1157525230 (DE-599)BVBBV048223142 |
dewey-full | 658.4036 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4036 |
dewey-search | 658.4036 |
dewey-sort | 3658.4036 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09837nmm a2200625zcb4500</leader><controlfield tag="001">BV048223142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030486419</subfield><subfield code="9">978-3-030-48641-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6295305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6295305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6295305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1157525230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048223142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4036</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 020</subfield><subfield code="0">(DE-625)141237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morais, Danielle Costa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group Decision and Negotiation</subfield><subfield code="b">20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (212 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Business Information Processing Ser.</subfield><subfield code="v">v.388</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Organization -- Contents -- Conflict Resolution -- Nash Stability in a Multi-objective Graph Model with Interval Preference Weights: Application to a US-China Trade Dispute -- Abstract -- 1 Introduction -- 2 Graph Model -- 2.1 Graph Model with Simple Preference -- 2.2 Graph Model with Multiple Objectives -- 3 Application: US-China Trade Dispute -- 3.1 Background of US-China Trade Dispute -- 3.2 Multi-objective Graph Model of US-China Trade Dispute -- 4 Multi-objective Graph Model with Interval Preference Weights -- 5 US-China Trade Dispute with Interval Preference -- 6 Conclusion -- References -- A Novel Conflict Resolution Model Based on the Composition of Probabilistic Preferences -- Abstract -- 1 Introduction -- 2 Composition of Probabilistic Preferences (CPP) -- 3 Conflict Resolution Model Based on Composition of Probabilistic Preferences (CRMCPP) -- 4 Numerical Example -- 5 Conclusion and Final Remarks -- References -- Analysis of Disputed Territories in the Barents Sea -- Abstract -- 1 Introduction -- 2 Data Description -- 3 A Model -- 3.1 Problem Statement -- 3.2 Utility Functions -- 3.3 Areas Allocation -- 4 Resolution Models -- 4.1 Allocation of Areas Regardless the Level of Interest in Areas of the Barents Sea -- 4.2 Allocation of Areas with Respect to the Level of Interest in Areas of the Barents Sea -- 4.3 Allocation of Areas to the Most Interested Country -- 5 Results -- 5.1 Fossil Fuels and Fish Resources Have the Same Importance (∝= 1) -- 5.2 Fossil Fuels Are Five Times More Important Than Fish Resources (∝ = 5) -- 5.3 Fossil Fuels Are Ten Times More Important Than Fish Resources (∝ = 10) -- 6 Conclusion -- Acknowledgements -- References -- A Novel Method for Eliminating Redundant Option Statements in the Graph Model for Conflict Resolution -- Abstract -- 1 Introduction -- 2 Option Prioritization in GMCR.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3 An Option Statement Reduction Method for Option Prioritization -- 4 Case Studies -- 5 Conclusions and Future Work -- References -- Alternatives vs. Time - Measuring the Force of Distinct Sources of Bargaining Power -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Empirical Study -- 3.1 Method -- 3.2 Results -- 4 Discussion -- References -- Preference Modeling for Group Decision and Negotiation -- Influence Across Agents and Issues in Combinatorial and Collective Decision-Making -- 1 Introduction -- 2 Related Works -- 2.1 How to Address Multiple Sources of Influence Among Agents in a Cardinal Approach -- 2.2 How to Address Multiple Sources of Influence Among Agents in an Ordinal Approach -- 2.3 From Social Choice Functions to Social Influence Functions -- 3 Multiple Sources of Influence Across Agents and Issues -- 4 Weighted Influence Across Agents and Issues -- 5 One Dominant Influence Across Agents and Issues -- 6 Discussion and Conclusion -- References -- A Characterization for Procedural Choice Based on Dichotomous Preferences Over Criteria -- Abstract -- 1 Introduction -- 2 Designing a Formal Model for PCBPC -- 3 Results -- 4 Discussion -- 5 Concluding Remarks -- References -- Influence Among Preferences and Its Transformation to Behaviors in Groups -- Abstract -- 1 Introduction -- 2 Influence on Preferences Among Agents and Its Transformation to Behaviors in Multi-agent Systems -- 2.1 Transformation from Preferences to Behaviors -- 2.2 Weighted and Signed Influence Among Preferences -- 3 An Example of Influence Among Preferences and Behaviors in Groups: Fertility Intention and Behavior in Families -- 4 From Individual Intention, to Individual Behavior and to Social Evolution: A New Approach for Demography -- 5 Mathematical Model: Variables Definition and Rules Design -- 5.1 Define Variables -- 5.2 Design Rules -- 6 Computer Model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7 Simulation Experiments and Results -- 8 Discussion, Conclusion and Future Work -- Acknowledgements -- References -- Manipulability of Majoritarian Procedures in Two-Dimensional Downsian Model -- Abstract -- 1 Manipulability Model -- 2 The Aggregation Procedures -- 3 Extended Preferences -- 4 The Scheme of Calculation -- 5 Calculation Results -- 6 Conclusion -- Acknowledgements -- References -- Intelligent Group Decision Making and Consensus Process -- PredictRV: A Prediction Based Strategy for Negotiations with Dynamically Changing Reservation Value -- 1 Introduction -- 1.1 Related Work -- 2 Static RV -- 2.1 Negotiation Model -- 2.2 Utility Generation for ONAC Algorithm -- 2.3 Utility Generation for Boulware Algorithm -- 3 Dynamic RV: The PredictRV Strategy -- 3.1 Negotiation Model -- 3.2 ONAC for Dynamic Reservation Values -- 3.3 Boulware for Dynamic Reservation Values -- 3.4 Illustrative Example -- 3.5 Steps of Strategy for PredictRV -- 3.6 Counter Learning -- 3.7 Bayesian Learning with Regression Analysis (BLRA) -- 3.8 LSTM Based Prediction -- 4 Example Continued -- 5 Experiments -- 5.1 Setup for the Experiments -- 5.2 Metrics -- 5.3 Fire Disaster Response -- 5.4 Meeting Scheduling Domain -- 5.5 Summary of the Experiments -- 6 Conclusions -- References -- Inferring Personality Types for Better Automated Negotiation -- 1 Introduction -- 2 Partially Observable Markov Decision Process Framework -- 2.1 Encoding a Negotiation Problem in the POMDP Framework -- 2.2 State Space Definition -- 2.3 Action and Observation Set -- 2.4 State Transition Function -- 2.5 Observation Function -- 2.6 Reward Function -- 2.7 Discount Factor -- 3 Input Generation for the POMDP Model -- 4 Evaluation of the POMDP Agent -- 4.1 Sanity Check Experiment -- 4.2 Reward Function Evaluation -- 4.3 Effect of Opponent Type Misclassification in Input Transcripts</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Experiment Results -- 5.1 Generation of Negotiation Data -- 5.2 Opponent Personality Type Prediction -- 6 Conclusions -- References -- Decision Rule Aggregation Approach to Support Group Decision Making -- 1 Introduction -- 2 Background -- 2.1 Notations and Basic Assumptions -- 2.2 Rough Approximation -- 2.3 Decision Rules -- 3 Decision Rules Matching and Overlapping -- 3.1 Basic Definitions -- 3.2 Conditions Matching -- 3.3 Decision Rules Matching -- 3.4 Overlapping Decision Rules -- 4 Decision Rules Aggregation -- 4.1 Step 1: Transformation of Overlapping Decision Rules -- 4.2 Step 2: Elimination of Redundant Decision Rules -- 5 Application -- 6 Conclusion -- References -- Collaborative Decision Making Processes -- An Ontology for Collaborative Decision Making -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Collaborative Decision Making Process -- 2.2 Ontology Definition -- 2.3 Types of Ontologies -- 2.4 Ontology Engineering -- 2.5 Collaboration Engineering -- 3 Developing an Ontology for Collaborative Decision Making -- 3.1 Our Ontology Building -- 3.2 An Ontology for Collaborative Decision Making -- 4 Conclusion -- References -- Decidio: A Pilot Implementation and User Study of a Novel Decision-Support System -- 1 Introduction -- 2 Functionality of the Decidio Pilot Implementation -- 3 User Study -- 3.1 QUEST Workflow -- 3.2 User Activity Logs -- 4 Results -- 4.1 Tool Evaluation Survey -- 4.2 User Activity Logs -- 4.3 Personality Survey -- 5 Discussion -- 5.1 Observations Based on User Personalities -- 5.2 Limitations -- 5.3 Future Vision -- 6 Conclusion -- A Appendix -- A.1 Tool Evaluation Survey -- References -- Author Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group decision making-Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstechnik</subfield><subfield code="0">(DE-588)4026926-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verhandlung</subfield><subfield code="0">(DE-588)4062875-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenentscheidung</subfield><subfield code="0">(DE-588)4158442-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendungssoftware</subfield><subfield code="0">(DE-588)4120906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2020</subfield><subfield code="z">Online</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppenentscheidung</subfield><subfield code="0">(DE-588)4158442-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verhandlung</subfield><subfield code="0">(DE-588)4062875-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Entscheidung bei Unsicherheit</subfield><subfield code="0">(DE-588)4070864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Anwendungssoftware</subfield><subfield code="0">(DE-588)4120906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Informationstechnik</subfield><subfield code="0">(DE-588)4026926-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Liping</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horita, Masahide</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Morais, Danielle Costa</subfield><subfield code="t">Group Decision and Negotiation: a Multidisciplinary Perspective</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030486402</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033603875</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2020 Online gnd-content |
genre_facet | Konferenzschrift 2020 Online |
id | DE-604.BV048223142 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:37Z |
indexdate | 2024-07-10T09:32:27Z |
institution | BVB |
isbn | 9783030486419 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033603875 |
oclc_num | 1157525230 |
open_access_boolean | |
physical | 1 Online-Ressource (212 pages) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Lecture Notes in Business Information Processing Ser. |
spelling | Morais, Danielle Costa Verfasser aut Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings Cham Springer International Publishing AG 2020 ©2020 1 Online-Ressource (212 pages) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Business Information Processing Ser. v.388 Description based on publisher supplied metadata and other sources Intro -- Preface -- Organization -- Contents -- Conflict Resolution -- Nash Stability in a Multi-objective Graph Model with Interval Preference Weights: Application to a US-China Trade Dispute -- Abstract -- 1 Introduction -- 2 Graph Model -- 2.1 Graph Model with Simple Preference -- 2.2 Graph Model with Multiple Objectives -- 3 Application: US-China Trade Dispute -- 3.1 Background of US-China Trade Dispute -- 3.2 Multi-objective Graph Model of US-China Trade Dispute -- 4 Multi-objective Graph Model with Interval Preference Weights -- 5 US-China Trade Dispute with Interval Preference -- 6 Conclusion -- References -- A Novel Conflict Resolution Model Based on the Composition of Probabilistic Preferences -- Abstract -- 1 Introduction -- 2 Composition of Probabilistic Preferences (CPP) -- 3 Conflict Resolution Model Based on Composition of Probabilistic Preferences (CRMCPP) -- 4 Numerical Example -- 5 Conclusion and Final Remarks -- References -- Analysis of Disputed Territories in the Barents Sea -- Abstract -- 1 Introduction -- 2 Data Description -- 3 A Model -- 3.1 Problem Statement -- 3.2 Utility Functions -- 3.3 Areas Allocation -- 4 Resolution Models -- 4.1 Allocation of Areas Regardless the Level of Interest in Areas of the Barents Sea -- 4.2 Allocation of Areas with Respect to the Level of Interest in Areas of the Barents Sea -- 4.3 Allocation of Areas to the Most Interested Country -- 5 Results -- 5.1 Fossil Fuels and Fish Resources Have the Same Importance (∝= 1) -- 5.2 Fossil Fuels Are Five Times More Important Than Fish Resources (∝ = 5) -- 5.3 Fossil Fuels Are Ten Times More Important Than Fish Resources (∝ = 10) -- 6 Conclusion -- Acknowledgements -- References -- A Novel Method for Eliminating Redundant Option Statements in the Graph Model for Conflict Resolution -- Abstract -- 1 Introduction -- 2 Option Prioritization in GMCR. 3 An Option Statement Reduction Method for Option Prioritization -- 4 Case Studies -- 5 Conclusions and Future Work -- References -- Alternatives vs. Time - Measuring the Force of Distinct Sources of Bargaining Power -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Empirical Study -- 3.1 Method -- 3.2 Results -- 4 Discussion -- References -- Preference Modeling for Group Decision and Negotiation -- Influence Across Agents and Issues in Combinatorial and Collective Decision-Making -- 1 Introduction -- 2 Related Works -- 2.1 How to Address Multiple Sources of Influence Among Agents in a Cardinal Approach -- 2.2 How to Address Multiple Sources of Influence Among Agents in an Ordinal Approach -- 2.3 From Social Choice Functions to Social Influence Functions -- 3 Multiple Sources of Influence Across Agents and Issues -- 4 Weighted Influence Across Agents and Issues -- 5 One Dominant Influence Across Agents and Issues -- 6 Discussion and Conclusion -- References -- A Characterization for Procedural Choice Based on Dichotomous Preferences Over Criteria -- Abstract -- 1 Introduction -- 2 Designing a Formal Model for PCBPC -- 3 Results -- 4 Discussion -- 5 Concluding Remarks -- References -- Influence Among Preferences and Its Transformation to Behaviors in Groups -- Abstract -- 1 Introduction -- 2 Influence on Preferences Among Agents and Its Transformation to Behaviors in Multi-agent Systems -- 2.1 Transformation from Preferences to Behaviors -- 2.2 Weighted and Signed Influence Among Preferences -- 3 An Example of Influence Among Preferences and Behaviors in Groups: Fertility Intention and Behavior in Families -- 4 From Individual Intention, to Individual Behavior and to Social Evolution: A New Approach for Demography -- 5 Mathematical Model: Variables Definition and Rules Design -- 5.1 Define Variables -- 5.2 Design Rules -- 6 Computer Model 7 Simulation Experiments and Results -- 8 Discussion, Conclusion and Future Work -- Acknowledgements -- References -- Manipulability of Majoritarian Procedures in Two-Dimensional Downsian Model -- Abstract -- 1 Manipulability Model -- 2 The Aggregation Procedures -- 3 Extended Preferences -- 4 The Scheme of Calculation -- 5 Calculation Results -- 6 Conclusion -- Acknowledgements -- References -- Intelligent Group Decision Making and Consensus Process -- PredictRV: A Prediction Based Strategy for Negotiations with Dynamically Changing Reservation Value -- 1 Introduction -- 1.1 Related Work -- 2 Static RV -- 2.1 Negotiation Model -- 2.2 Utility Generation for ONAC Algorithm -- 2.3 Utility Generation for Boulware Algorithm -- 3 Dynamic RV: The PredictRV Strategy -- 3.1 Negotiation Model -- 3.2 ONAC for Dynamic Reservation Values -- 3.3 Boulware for Dynamic Reservation Values -- 3.4 Illustrative Example -- 3.5 Steps of Strategy for PredictRV -- 3.6 Counter Learning -- 3.7 Bayesian Learning with Regression Analysis (BLRA) -- 3.8 LSTM Based Prediction -- 4 Example Continued -- 5 Experiments -- 5.1 Setup for the Experiments -- 5.2 Metrics -- 5.3 Fire Disaster Response -- 5.4 Meeting Scheduling Domain -- 5.5 Summary of the Experiments -- 6 Conclusions -- References -- Inferring Personality Types for Better Automated Negotiation -- 1 Introduction -- 2 Partially Observable Markov Decision Process Framework -- 2.1 Encoding a Negotiation Problem in the POMDP Framework -- 2.2 State Space Definition -- 2.3 Action and Observation Set -- 2.4 State Transition Function -- 2.5 Observation Function -- 2.6 Reward Function -- 2.7 Discount Factor -- 3 Input Generation for the POMDP Model -- 4 Evaluation of the POMDP Agent -- 4.1 Sanity Check Experiment -- 4.2 Reward Function Evaluation -- 4.3 Effect of Opponent Type Misclassification in Input Transcripts 5 Experiment Results -- 5.1 Generation of Negotiation Data -- 5.2 Opponent Personality Type Prediction -- 6 Conclusions -- References -- Decision Rule Aggregation Approach to Support Group Decision Making -- 1 Introduction -- 2 Background -- 2.1 Notations and Basic Assumptions -- 2.2 Rough Approximation -- 2.3 Decision Rules -- 3 Decision Rules Matching and Overlapping -- 3.1 Basic Definitions -- 3.2 Conditions Matching -- 3.3 Decision Rules Matching -- 3.4 Overlapping Decision Rules -- 4 Decision Rules Aggregation -- 4.1 Step 1: Transformation of Overlapping Decision Rules -- 4.2 Step 2: Elimination of Redundant Decision Rules -- 5 Application -- 6 Conclusion -- References -- Collaborative Decision Making Processes -- An Ontology for Collaborative Decision Making -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Collaborative Decision Making Process -- 2.2 Ontology Definition -- 2.3 Types of Ontologies -- 2.4 Ontology Engineering -- 2.5 Collaboration Engineering -- 3 Developing an Ontology for Collaborative Decision Making -- 3.1 Our Ontology Building -- 3.2 An Ontology for Collaborative Decision Making -- 4 Conclusion -- References -- Decidio: A Pilot Implementation and User Study of a Novel Decision-Support System -- 1 Introduction -- 2 Functionality of the Decidio Pilot Implementation -- 3 User Study -- 3.1 QUEST Workflow -- 3.2 User Activity Logs -- 4 Results -- 4.1 Tool Evaluation Survey -- 4.2 User Activity Logs -- 4.3 Personality Survey -- 5 Discussion -- 5.1 Observations Based on User Personalities -- 5.2 Limitations -- 5.3 Future Vision -- 6 Conclusion -- A Appendix -- A.1 Tool Evaluation Survey -- References -- Author Index Group decision making-Congresses Informationstechnik (DE-588)4026926-7 gnd rswk-swf Verhandlung (DE-588)4062875-9 gnd rswk-swf Operations Research (DE-588)4043586-6 gnd rswk-swf Gruppenentscheidung (DE-588)4158442-9 gnd rswk-swf Anwendungssoftware (DE-588)4120906-0 gnd rswk-swf Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2020 Online gnd-content Gruppenentscheidung (DE-588)4158442-9 s Verhandlung (DE-588)4062875-9 s Entscheidung bei Unsicherheit (DE-588)4070864-0 s DE-604 Anwendungssoftware (DE-588)4120906-0 s Operations Research (DE-588)4043586-6 s Informationstechnik (DE-588)4026926-7 s Fang, Liping Sonstige oth Horita, Masahide Sonstige oth Erscheint auch als Druck-Ausgabe Morais, Danielle Costa Group Decision and Negotiation: a Multidisciplinary Perspective Cham : Springer International Publishing AG,c2020 9783030486402 |
spellingShingle | Morais, Danielle Costa Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings Intro -- Preface -- Organization -- Contents -- Conflict Resolution -- Nash Stability in a Multi-objective Graph Model with Interval Preference Weights: Application to a US-China Trade Dispute -- Abstract -- 1 Introduction -- 2 Graph Model -- 2.1 Graph Model with Simple Preference -- 2.2 Graph Model with Multiple Objectives -- 3 Application: US-China Trade Dispute -- 3.1 Background of US-China Trade Dispute -- 3.2 Multi-objective Graph Model of US-China Trade Dispute -- 4 Multi-objective Graph Model with Interval Preference Weights -- 5 US-China Trade Dispute with Interval Preference -- 6 Conclusion -- References -- A Novel Conflict Resolution Model Based on the Composition of Probabilistic Preferences -- Abstract -- 1 Introduction -- 2 Composition of Probabilistic Preferences (CPP) -- 3 Conflict Resolution Model Based on Composition of Probabilistic Preferences (CRMCPP) -- 4 Numerical Example -- 5 Conclusion and Final Remarks -- References -- Analysis of Disputed Territories in the Barents Sea -- Abstract -- 1 Introduction -- 2 Data Description -- 3 A Model -- 3.1 Problem Statement -- 3.2 Utility Functions -- 3.3 Areas Allocation -- 4 Resolution Models -- 4.1 Allocation of Areas Regardless the Level of Interest in Areas of the Barents Sea -- 4.2 Allocation of Areas with Respect to the Level of Interest in Areas of the Barents Sea -- 4.3 Allocation of Areas to the Most Interested Country -- 5 Results -- 5.1 Fossil Fuels and Fish Resources Have the Same Importance (∝= 1) -- 5.2 Fossil Fuels Are Five Times More Important Than Fish Resources (∝ = 5) -- 5.3 Fossil Fuels Are Ten Times More Important Than Fish Resources (∝ = 10) -- 6 Conclusion -- Acknowledgements -- References -- A Novel Method for Eliminating Redundant Option Statements in the Graph Model for Conflict Resolution -- Abstract -- 1 Introduction -- 2 Option Prioritization in GMCR. 3 An Option Statement Reduction Method for Option Prioritization -- 4 Case Studies -- 5 Conclusions and Future Work -- References -- Alternatives vs. Time - Measuring the Force of Distinct Sources of Bargaining Power -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Empirical Study -- 3.1 Method -- 3.2 Results -- 4 Discussion -- References -- Preference Modeling for Group Decision and Negotiation -- Influence Across Agents and Issues in Combinatorial and Collective Decision-Making -- 1 Introduction -- 2 Related Works -- 2.1 How to Address Multiple Sources of Influence Among Agents in a Cardinal Approach -- 2.2 How to Address Multiple Sources of Influence Among Agents in an Ordinal Approach -- 2.3 From Social Choice Functions to Social Influence Functions -- 3 Multiple Sources of Influence Across Agents and Issues -- 4 Weighted Influence Across Agents and Issues -- 5 One Dominant Influence Across Agents and Issues -- 6 Discussion and Conclusion -- References -- A Characterization for Procedural Choice Based on Dichotomous Preferences Over Criteria -- Abstract -- 1 Introduction -- 2 Designing a Formal Model for PCBPC -- 3 Results -- 4 Discussion -- 5 Concluding Remarks -- References -- Influence Among Preferences and Its Transformation to Behaviors in Groups -- Abstract -- 1 Introduction -- 2 Influence on Preferences Among Agents and Its Transformation to Behaviors in Multi-agent Systems -- 2.1 Transformation from Preferences to Behaviors -- 2.2 Weighted and Signed Influence Among Preferences -- 3 An Example of Influence Among Preferences and Behaviors in Groups: Fertility Intention and Behavior in Families -- 4 From Individual Intention, to Individual Behavior and to Social Evolution: A New Approach for Demography -- 5 Mathematical Model: Variables Definition and Rules Design -- 5.1 Define Variables -- 5.2 Design Rules -- 6 Computer Model 7 Simulation Experiments and Results -- 8 Discussion, Conclusion and Future Work -- Acknowledgements -- References -- Manipulability of Majoritarian Procedures in Two-Dimensional Downsian Model -- Abstract -- 1 Manipulability Model -- 2 The Aggregation Procedures -- 3 Extended Preferences -- 4 The Scheme of Calculation -- 5 Calculation Results -- 6 Conclusion -- Acknowledgements -- References -- Intelligent Group Decision Making and Consensus Process -- PredictRV: A Prediction Based Strategy for Negotiations with Dynamically Changing Reservation Value -- 1 Introduction -- 1.1 Related Work -- 2 Static RV -- 2.1 Negotiation Model -- 2.2 Utility Generation for ONAC Algorithm -- 2.3 Utility Generation for Boulware Algorithm -- 3 Dynamic RV: The PredictRV Strategy -- 3.1 Negotiation Model -- 3.2 ONAC for Dynamic Reservation Values -- 3.3 Boulware for Dynamic Reservation Values -- 3.4 Illustrative Example -- 3.5 Steps of Strategy for PredictRV -- 3.6 Counter Learning -- 3.7 Bayesian Learning with Regression Analysis (BLRA) -- 3.8 LSTM Based Prediction -- 4 Example Continued -- 5 Experiments -- 5.1 Setup for the Experiments -- 5.2 Metrics -- 5.3 Fire Disaster Response -- 5.4 Meeting Scheduling Domain -- 5.5 Summary of the Experiments -- 6 Conclusions -- References -- Inferring Personality Types for Better Automated Negotiation -- 1 Introduction -- 2 Partially Observable Markov Decision Process Framework -- 2.1 Encoding a Negotiation Problem in the POMDP Framework -- 2.2 State Space Definition -- 2.3 Action and Observation Set -- 2.4 State Transition Function -- 2.5 Observation Function -- 2.6 Reward Function -- 2.7 Discount Factor -- 3 Input Generation for the POMDP Model -- 4 Evaluation of the POMDP Agent -- 4.1 Sanity Check Experiment -- 4.2 Reward Function Evaluation -- 4.3 Effect of Opponent Type Misclassification in Input Transcripts 5 Experiment Results -- 5.1 Generation of Negotiation Data -- 5.2 Opponent Personality Type Prediction -- 6 Conclusions -- References -- Decision Rule Aggregation Approach to Support Group Decision Making -- 1 Introduction -- 2 Background -- 2.1 Notations and Basic Assumptions -- 2.2 Rough Approximation -- 2.3 Decision Rules -- 3 Decision Rules Matching and Overlapping -- 3.1 Basic Definitions -- 3.2 Conditions Matching -- 3.3 Decision Rules Matching -- 3.4 Overlapping Decision Rules -- 4 Decision Rules Aggregation -- 4.1 Step 1: Transformation of Overlapping Decision Rules -- 4.2 Step 2: Elimination of Redundant Decision Rules -- 5 Application -- 6 Conclusion -- References -- Collaborative Decision Making Processes -- An Ontology for Collaborative Decision Making -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Collaborative Decision Making Process -- 2.2 Ontology Definition -- 2.3 Types of Ontologies -- 2.4 Ontology Engineering -- 2.5 Collaboration Engineering -- 3 Developing an Ontology for Collaborative Decision Making -- 3.1 Our Ontology Building -- 3.2 An Ontology for Collaborative Decision Making -- 4 Conclusion -- References -- Decidio: A Pilot Implementation and User Study of a Novel Decision-Support System -- 1 Introduction -- 2 Functionality of the Decidio Pilot Implementation -- 3 User Study -- 3.1 QUEST Workflow -- 3.2 User Activity Logs -- 4 Results -- 4.1 Tool Evaluation Survey -- 4.2 User Activity Logs -- 4.3 Personality Survey -- 5 Discussion -- 5.1 Observations Based on User Personalities -- 5.2 Limitations -- 5.3 Future Vision -- 6 Conclusion -- A Appendix -- A.1 Tool Evaluation Survey -- References -- Author Index Group decision making-Congresses Informationstechnik (DE-588)4026926-7 gnd Verhandlung (DE-588)4062875-9 gnd Operations Research (DE-588)4043586-6 gnd Gruppenentscheidung (DE-588)4158442-9 gnd Anwendungssoftware (DE-588)4120906-0 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd |
subject_GND | (DE-588)4026926-7 (DE-588)4062875-9 (DE-588)4043586-6 (DE-588)4158442-9 (DE-588)4120906-0 (DE-588)4070864-0 (DE-588)1071861417 |
title | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_auth | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_exact_search | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_exact_search_txtP | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_full | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_fullStr | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_full_unstemmed | Group Decision and Negotiation 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
title_short | Group Decision and Negotiation |
title_sort | group decision and negotiation 20th international conference on group decision and negotiation gdn 2020 toronto on canada june 7 11 2020 proceedings |
title_sub | 20th International Conference on Group Decision and Negotiation, GDN 2020, Toronto, on, Canada, June 7-11, 2020, Proceedings |
topic | Group decision making-Congresses Informationstechnik (DE-588)4026926-7 gnd Verhandlung (DE-588)4062875-9 gnd Operations Research (DE-588)4043586-6 gnd Gruppenentscheidung (DE-588)4158442-9 gnd Anwendungssoftware (DE-588)4120906-0 gnd Entscheidung bei Unsicherheit (DE-588)4070864-0 gnd |
topic_facet | Group decision making-Congresses Informationstechnik Verhandlung Operations Research Gruppenentscheidung Anwendungssoftware Entscheidung bei Unsicherheit Konferenzschrift 2020 Online |
work_keys_str_mv | AT moraisdaniellecosta groupdecisionandnegotiation20thinternationalconferenceongroupdecisionandnegotiationgdn2020torontooncanadajune7112020proceedings AT fangliping groupdecisionandnegotiation20thinternationalconferenceongroupdecisionandnegotiationgdn2020torontooncanadajune7112020proceedings AT horitamasahide groupdecisionandnegotiation20thinternationalconferenceongroupdecisionandnegotiationgdn2020torontooncanadajune7112020proceedings |