Quantitative Portfolio Management: With Applications in Python
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | Springer Texts in Business and Economics Ser
|
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (212 pages) |
ISBN: | 9783030377403 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048222598 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030377403 |9 978-3-030-37740-3 | ||
035 | |a (ZDB-30-PQE)EBC6147797 | ||
035 | |a (ZDB-30-PAD)EBC6147797 | ||
035 | |a (ZDB-89-EBL)EBL6147797 | ||
035 | |a (OCoLC)1148885924 | ||
035 | |a (DE-599)BVBBV048222598 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 332.6 | |
084 | |a QK 810 |0 (DE-625)141682: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
100 | 1 | |a Brugière, Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantitative Portfolio Management |b With Applications in Python |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (212 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Business and Economics Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Contents -- 1 Returns and the Gaussian Hypothesis -- 1.1 Measure of the Performance -- 1.1.1 Return -- 1.1.2 Rate of Return -- 1.2 Probabilistic and Empirical Definitions -- 1.3 Goodness of Fit Tests -- 1.3.1 Example: Testing the Normality of the Returns of the DAX 30 -- 1.4 Further Statistical Results -- 1.4.1 Convergence of the Density Function Estimate -- 1.4.2 Tests Based on Cumulative Distribution Function Estimates -- 1.4.3 Tests Based on Order Statistics -- 1.4.4 Parameter Estimation and Confidence Intervals -- 1.5 Market Data with Python -- 1.5.1 Data Extraction for the DAX 30 -- 1.5.2 Statistical Analysis for the DAX 30 -- A Few References -- 2 Utility Functions and the Theory of Choice -- 2.1 Utility Functions and Preferred Investments -- 2.1.1 Risk Appetite and Concavity -- 2.2 Gaussian Laws and Mean-Variance Implications -- 2.3 Efficient Investment Strategies -- A Few References -- 3 The Markowitz Framework -- 3.1 Investment and Self-Financing Portfolios -- 3.1.1 Notations and Definitions -- 3.1.2 Representations of the Portfolios -- 3.1.3 Return of a Portfolio -- 3.2 Absence of Arbitrage Opportunities -- 3.2.1 Analysis of the Variance-Covariance Matrix -- 3.2.2 The Correlation Matrix -- 3.3 Multidimensional Estimations -- 3.3.1 Wishart, Hotelling's T2 and Fisher-Snedecor Distributions -- 3.3.2 Mean Vector and Variance-Covariance Matrix Estimates -- 3.3.3 Confidence Domain and Statistical Tests -- 3.4 Maket Data with Python -- A Few References -- 4 Markowitz Without a Risk-Free Asset -- 4.1 The Optimisation Problem -- 4.2 The Geometric Nature of the Set F(σ,m) -- 4.3 The Two Fund Theorem -- 4.3.1 Example with Two Assets: Importance of the Correlation -- 4.4 Alternative Parametrisation of F(σ, m) and Conclusion -- A Few References -- 5 Markowitz with a Risk-Free Asset -- 5.1 The Optimisation Problem | |
505 | 8 | |a 5.2 Capital Market Line and Limit Cone C(σ, m) -- 5.2.1 The Market Portfolio -- 5.2.2 The Tangent Portfolio -- 5.2.3 More Geometric Properties -- 5.3 The Security Market Line -- 5.3.1 The Security Market Line and ''Arbitrage'' Detections -- 5.4 Market Data with Python -- 5.4.1 The Frontier and Capital Market Line for the DAX 30 Components -- 5.4.2 Adding Additional Constraints -- 5.5 Stability of the Solutions -- 5.5.1 Stabilisation by Correlation Adjustment -- 5.6 The Bayesian Approach -- 5.6.1 Jeffrey's Prior μ0 on M and -- 5.6.2 Gaussian Prior μ0 on M -- 5.6.3 The Black-Litterman Model -- A Few References -- 6 Performance and Diversification Indicators -- 6.1 The Sharpe Ratio -- 6.2 The Jensen Index -- 6.3 The Treynor Index -- 6.4 Other Risk/Return Indicators -- 6.5 The Diversification Ratio -- A Few References -- 7 Risk Measures and Capital Allocation -- 7.1 Definition of a Risk Measure -- 7.2 Risk Measure in the Markowitz Framework -- 7.2.1 The Markowitz Risk Measure -- 7.2.2 Value at Risk -- 7.2.3 Expected Shortfall -- 7.3 Euler's Formula and Capital Allocation -- 7.3.1 Example of Risk Measure and Capital Allocation -- 7.4 Return on Risk-Adjusted Capital -- 7.4.1 Maximising the RORAC -- 7.4.2 Capital Allocation for a Positive Homogeneous Risk Measure -- 7.4.3 Example: Euler Allocation -- 7.4.4 Example: RORAC for Optimal Portfolios -- 7.4.5 Calculation of a Portfolio VaR, from Observed Asset Prices -- 7.4.6 Example: Boostrap Historical Simulation for a Portfolio VaR -- A Few References -- 8 Factor Models -- 8.1 Definitions and Notations -- 8.1.1 The Tangent Portfolio as a Factor -- 8.1.2 Endogenous and Exogenous Factors -- 8.1.3 Standard Form for a Factor Model -- 8.2 Identifying the Coefficients When the Factors Are Known -- 8.2.1 Regression on the Factors -- 8.3 Example of a Factor Model -- 8.4 APT Models -- 8.4.1 Example of an APT Model | |
505 | 8 | |a 8.4.2 Further Remarks -- 8.4.3 Standard Form for an APT Model -- 8.5 Alternative Definition of an APT Model -- 8.5.1 Estimation of the Risk Premia in an APT Model -- A Few References -- 9 Identification of the Factors -- 9.1 Total Inertia and Trace of the Variance-Covariance Matrix -- 9.2 Total Inertia of the Projection -- 9.3 Principal Component Analysis and Factors -- 9.3.1 PCA of the Matrix of Variance-Covariance -- 9.3.2 PCA of the Correlation Matrix -- 9.4 Principal Components and Eigenvalues Visualisation -- 9.5 Python: Application to the DAX 30 Components -- 9.5.1 Factors Explaining the Variance for the DAX 30 Components -- 9.5.2 Explanation of the Factors for the DAX 30 Components -- A Few References -- 10 Exercises and Problems -- 10.1 Midterm Exam, November 2015 -- Master M1: Mido 2nd November 2015 (Midterm Exam: Portfolio Management) -- 10.1.1 Solutions: Midterm Exam, November 2015 -- Master M1: Mido 2015-2016 (Midterm Exam: Portfolio Management) -- 10.2 Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management: Time 1h 30min) -- 10.2.1 Solutions: Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management) -- 10.3 Midterm Exam, November 2016 -- Master M1: Mido 3rd November 2016 (Exam: Portfolio Management: Time 2h) -- 10.3.1 Solutions: Midterm Exam, November 2016 -- 10.4 Exam, January 2017 -- Master M1: Mido 11th January 2017 (Exam: Portfolio Management: Time 2h) -- 10.4.1 Solutions: Exam, January 2017 -- 10.5 Midterm Exam, November 2017 -- Master M1: Mido 2nd November 2017 (Midterm Exam: Portfolio Management: Time 2h) -- 10.5.1 Solutions: Midterm Exam, November 2017 -- 10.6 Exam, January 2018 -- Master M1: Mido 15th January 2018 (Exam: Portfolio Management: Time 2h) -- 10.6.1 Solutions: Exam, January 2018 -- 10.7 Midterm Exam, October 2018 | |
505 | 8 | |a Master M1: Mido 29th October 2018 (Midterm Exam: Portfolio Management: Time 2h) -- 10.7.1 Solutions: Midterm Exam October 2018 -- A The Lagrangian -- A.1 Main Results -- A.1.1 Solution of the Markowitz Problem -- B Parametrisations -- B.1 Confidence Domain for an Estimator of M -- B.2 Confidence Domain for an Observation Ri -- Bibliography -- Index | |
650 | 4 | |a Portfolio management | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Portfoliomanagement |0 (DE-588)4115601-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kapitalanlage |0 (DE-588)4073213-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantitative Methode |0 (DE-588)4232139-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Portfoliomanagement |0 (DE-588)4115601-8 |D s |
689 | 0 | 1 | |a Quantitative Methode |0 (DE-588)4232139-6 |D s |
689 | 0 | 2 | |a Kapitalanlage |0 (DE-588)4073213-7 |D s |
689 | 0 | 3 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 0 | 4 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Brugière, Pierre |t Quantitative Portfolio Management |d Cham : Springer International Publishing AG,c2020 |z 9783030377397 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033603331 |
Datensatz im Suchindex
_version_ | 1804184004102979584 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Brugière, Pierre |
author_facet | Brugière, Pierre |
author_role | aut |
author_sort | Brugière, Pierre |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV048222598 |
classification_rvk | QK 810 SK 980 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- 1 Returns and the Gaussian Hypothesis -- 1.1 Measure of the Performance -- 1.1.1 Return -- 1.1.2 Rate of Return -- 1.2 Probabilistic and Empirical Definitions -- 1.3 Goodness of Fit Tests -- 1.3.1 Example: Testing the Normality of the Returns of the DAX 30 -- 1.4 Further Statistical Results -- 1.4.1 Convergence of the Density Function Estimate -- 1.4.2 Tests Based on Cumulative Distribution Function Estimates -- 1.4.3 Tests Based on Order Statistics -- 1.4.4 Parameter Estimation and Confidence Intervals -- 1.5 Market Data with Python -- 1.5.1 Data Extraction for the DAX 30 -- 1.5.2 Statistical Analysis for the DAX 30 -- A Few References -- 2 Utility Functions and the Theory of Choice -- 2.1 Utility Functions and Preferred Investments -- 2.1.1 Risk Appetite and Concavity -- 2.2 Gaussian Laws and Mean-Variance Implications -- 2.3 Efficient Investment Strategies -- A Few References -- 3 The Markowitz Framework -- 3.1 Investment and Self-Financing Portfolios -- 3.1.1 Notations and Definitions -- 3.1.2 Representations of the Portfolios -- 3.1.3 Return of a Portfolio -- 3.2 Absence of Arbitrage Opportunities -- 3.2.1 Analysis of the Variance-Covariance Matrix -- 3.2.2 The Correlation Matrix -- 3.3 Multidimensional Estimations -- 3.3.1 Wishart, Hotelling's T2 and Fisher-Snedecor Distributions -- 3.3.2 Mean Vector and Variance-Covariance Matrix Estimates -- 3.3.3 Confidence Domain and Statistical Tests -- 3.4 Maket Data with Python -- A Few References -- 4 Markowitz Without a Risk-Free Asset -- 4.1 The Optimisation Problem -- 4.2 The Geometric Nature of the Set F(σ,m) -- 4.3 The Two Fund Theorem -- 4.3.1 Example with Two Assets: Importance of the Correlation -- 4.4 Alternative Parametrisation of F(σ, m) and Conclusion -- A Few References -- 5 Markowitz with a Risk-Free Asset -- 5.1 The Optimisation Problem 5.2 Capital Market Line and Limit Cone C(σ, m) -- 5.2.1 The Market Portfolio -- 5.2.2 The Tangent Portfolio -- 5.2.3 More Geometric Properties -- 5.3 The Security Market Line -- 5.3.1 The Security Market Line and ''Arbitrage'' Detections -- 5.4 Market Data with Python -- 5.4.1 The Frontier and Capital Market Line for the DAX 30 Components -- 5.4.2 Adding Additional Constraints -- 5.5 Stability of the Solutions -- 5.5.1 Stabilisation by Correlation Adjustment -- 5.6 The Bayesian Approach -- 5.6.1 Jeffrey's Prior μ0 on M and -- 5.6.2 Gaussian Prior μ0 on M -- 5.6.3 The Black-Litterman Model -- A Few References -- 6 Performance and Diversification Indicators -- 6.1 The Sharpe Ratio -- 6.2 The Jensen Index -- 6.3 The Treynor Index -- 6.4 Other Risk/Return Indicators -- 6.5 The Diversification Ratio -- A Few References -- 7 Risk Measures and Capital Allocation -- 7.1 Definition of a Risk Measure -- 7.2 Risk Measure in the Markowitz Framework -- 7.2.1 The Markowitz Risk Measure -- 7.2.2 Value at Risk -- 7.2.3 Expected Shortfall -- 7.3 Euler's Formula and Capital Allocation -- 7.3.1 Example of Risk Measure and Capital Allocation -- 7.4 Return on Risk-Adjusted Capital -- 7.4.1 Maximising the RORAC -- 7.4.2 Capital Allocation for a Positive Homogeneous Risk Measure -- 7.4.3 Example: Euler Allocation -- 7.4.4 Example: RORAC for Optimal Portfolios -- 7.4.5 Calculation of a Portfolio VaR, from Observed Asset Prices -- 7.4.6 Example: Boostrap Historical Simulation for a Portfolio VaR -- A Few References -- 8 Factor Models -- 8.1 Definitions and Notations -- 8.1.1 The Tangent Portfolio as a Factor -- 8.1.2 Endogenous and Exogenous Factors -- 8.1.3 Standard Form for a Factor Model -- 8.2 Identifying the Coefficients When the Factors Are Known -- 8.2.1 Regression on the Factors -- 8.3 Example of a Factor Model -- 8.4 APT Models -- 8.4.1 Example of an APT Model 8.4.2 Further Remarks -- 8.4.3 Standard Form for an APT Model -- 8.5 Alternative Definition of an APT Model -- 8.5.1 Estimation of the Risk Premia in an APT Model -- A Few References -- 9 Identification of the Factors -- 9.1 Total Inertia and Trace of the Variance-Covariance Matrix -- 9.2 Total Inertia of the Projection -- 9.3 Principal Component Analysis and Factors -- 9.3.1 PCA of the Matrix of Variance-Covariance -- 9.3.2 PCA of the Correlation Matrix -- 9.4 Principal Components and Eigenvalues Visualisation -- 9.5 Python: Application to the DAX 30 Components -- 9.5.1 Factors Explaining the Variance for the DAX 30 Components -- 9.5.2 Explanation of the Factors for the DAX 30 Components -- A Few References -- 10 Exercises and Problems -- 10.1 Midterm Exam, November 2015 -- Master M1: Mido 2nd November 2015 (Midterm Exam: Portfolio Management) -- 10.1.1 Solutions: Midterm Exam, November 2015 -- Master M1: Mido 2015-2016 (Midterm Exam: Portfolio Management) -- 10.2 Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management: Time 1h 30min) -- 10.2.1 Solutions: Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management) -- 10.3 Midterm Exam, November 2016 -- Master M1: Mido 3rd November 2016 (Exam: Portfolio Management: Time 2h) -- 10.3.1 Solutions: Midterm Exam, November 2016 -- 10.4 Exam, January 2017 -- Master M1: Mido 11th January 2017 (Exam: Portfolio Management: Time 2h) -- 10.4.1 Solutions: Exam, January 2017 -- 10.5 Midterm Exam, November 2017 -- Master M1: Mido 2nd November 2017 (Midterm Exam: Portfolio Management: Time 2h) -- 10.5.1 Solutions: Midterm Exam, November 2017 -- 10.6 Exam, January 2018 -- Master M1: Mido 15th January 2018 (Exam: Portfolio Management: Time 2h) -- 10.6.1 Solutions: Exam, January 2018 -- 10.7 Midterm Exam, October 2018 Master M1: Mido 29th October 2018 (Midterm Exam: Portfolio Management: Time 2h) -- 10.7.1 Solutions: Midterm Exam October 2018 -- A The Lagrangian -- A.1 Main Results -- A.1.1 Solution of the Markowitz Problem -- B Parametrisations -- B.1 Confidence Domain for an Estimator of M -- B.2 Confidence Domain for an Observation Ri -- Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC6147797 (ZDB-30-PAD)EBC6147797 (ZDB-89-EBL)EBL6147797 (OCoLC)1148885924 (DE-599)BVBBV048222598 |
dewey-full | 332.6 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.6 |
dewey-search | 332.6 |
dewey-sort | 3332.6 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08019nmm a2200565zc 4500</leader><controlfield tag="001">BV048222598</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030377403</subfield><subfield code="9">978-3-030-37740-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6147797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6147797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6147797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148885924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048222598</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 810</subfield><subfield code="0">(DE-625)141682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brugière, Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative Portfolio Management</subfield><subfield code="b">With Applications in Python</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (212 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Business and Economics Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- 1 Returns and the Gaussian Hypothesis -- 1.1 Measure of the Performance -- 1.1.1 Return -- 1.1.2 Rate of Return -- 1.2 Probabilistic and Empirical Definitions -- 1.3 Goodness of Fit Tests -- 1.3.1 Example: Testing the Normality of the Returns of the DAX 30 -- 1.4 Further Statistical Results -- 1.4.1 Convergence of the Density Function Estimate -- 1.4.2 Tests Based on Cumulative Distribution Function Estimates -- 1.4.3 Tests Based on Order Statistics -- 1.4.4 Parameter Estimation and Confidence Intervals -- 1.5 Market Data with Python -- 1.5.1 Data Extraction for the DAX 30 -- 1.5.2 Statistical Analysis for the DAX 30 -- A Few References -- 2 Utility Functions and the Theory of Choice -- 2.1 Utility Functions and Preferred Investments -- 2.1.1 Risk Appetite and Concavity -- 2.2 Gaussian Laws and Mean-Variance Implications -- 2.3 Efficient Investment Strategies -- A Few References -- 3 The Markowitz Framework -- 3.1 Investment and Self-Financing Portfolios -- 3.1.1 Notations and Definitions -- 3.1.2 Representations of the Portfolios -- 3.1.3 Return of a Portfolio -- 3.2 Absence of Arbitrage Opportunities -- 3.2.1 Analysis of the Variance-Covariance Matrix -- 3.2.2 The Correlation Matrix -- 3.3 Multidimensional Estimations -- 3.3.1 Wishart, Hotelling's T2 and Fisher-Snedecor Distributions -- 3.3.2 Mean Vector and Variance-Covariance Matrix Estimates -- 3.3.3 Confidence Domain and Statistical Tests -- 3.4 Maket Data with Python -- A Few References -- 4 Markowitz Without a Risk-Free Asset -- 4.1 The Optimisation Problem -- 4.2 The Geometric Nature of the Set F(σ,m) -- 4.3 The Two Fund Theorem -- 4.3.1 Example with Two Assets: Importance of the Correlation -- 4.4 Alternative Parametrisation of F(σ, m) and Conclusion -- A Few References -- 5 Markowitz with a Risk-Free Asset -- 5.1 The Optimisation Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Capital Market Line and Limit Cone C(σ, m) -- 5.2.1 The Market Portfolio -- 5.2.2 The Tangent Portfolio -- 5.2.3 More Geometric Properties -- 5.3 The Security Market Line -- 5.3.1 The Security Market Line and ''Arbitrage'' Detections -- 5.4 Market Data with Python -- 5.4.1 The Frontier and Capital Market Line for the DAX 30 Components -- 5.4.2 Adding Additional Constraints -- 5.5 Stability of the Solutions -- 5.5.1 Stabilisation by Correlation Adjustment -- 5.6 The Bayesian Approach -- 5.6.1 Jeffrey's Prior μ0 on M and -- 5.6.2 Gaussian Prior μ0 on M -- 5.6.3 The Black-Litterman Model -- A Few References -- 6 Performance and Diversification Indicators -- 6.1 The Sharpe Ratio -- 6.2 The Jensen Index -- 6.3 The Treynor Index -- 6.4 Other Risk/Return Indicators -- 6.5 The Diversification Ratio -- A Few References -- 7 Risk Measures and Capital Allocation -- 7.1 Definition of a Risk Measure -- 7.2 Risk Measure in the Markowitz Framework -- 7.2.1 The Markowitz Risk Measure -- 7.2.2 Value at Risk -- 7.2.3 Expected Shortfall -- 7.3 Euler's Formula and Capital Allocation -- 7.3.1 Example of Risk Measure and Capital Allocation -- 7.4 Return on Risk-Adjusted Capital -- 7.4.1 Maximising the RORAC -- 7.4.2 Capital Allocation for a Positive Homogeneous Risk Measure -- 7.4.3 Example: Euler Allocation -- 7.4.4 Example: RORAC for Optimal Portfolios -- 7.4.5 Calculation of a Portfolio VaR, from Observed Asset Prices -- 7.4.6 Example: Boostrap Historical Simulation for a Portfolio VaR -- A Few References -- 8 Factor Models -- 8.1 Definitions and Notations -- 8.1.1 The Tangent Portfolio as a Factor -- 8.1.2 Endogenous and Exogenous Factors -- 8.1.3 Standard Form for a Factor Model -- 8.2 Identifying the Coefficients When the Factors Are Known -- 8.2.1 Regression on the Factors -- 8.3 Example of a Factor Model -- 8.4 APT Models -- 8.4.1 Example of an APT Model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.2 Further Remarks -- 8.4.3 Standard Form for an APT Model -- 8.5 Alternative Definition of an APT Model -- 8.5.1 Estimation of the Risk Premia in an APT Model -- A Few References -- 9 Identification of the Factors -- 9.1 Total Inertia and Trace of the Variance-Covariance Matrix -- 9.2 Total Inertia of the Projection -- 9.3 Principal Component Analysis and Factors -- 9.3.1 PCA of the Matrix of Variance-Covariance -- 9.3.2 PCA of the Correlation Matrix -- 9.4 Principal Components and Eigenvalues Visualisation -- 9.5 Python: Application to the DAX 30 Components -- 9.5.1 Factors Explaining the Variance for the DAX 30 Components -- 9.5.2 Explanation of the Factors for the DAX 30 Components -- A Few References -- 10 Exercises and Problems -- 10.1 Midterm Exam, November 2015 -- Master M1: Mido 2nd November 2015 (Midterm Exam: Portfolio Management) -- 10.1.1 Solutions: Midterm Exam, November 2015 -- Master M1: Mido 2015-2016 (Midterm Exam: Portfolio Management) -- 10.2 Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management: Time 1h 30min) -- 10.2.1 Solutions: Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management) -- 10.3 Midterm Exam, November 2016 -- Master M1: Mido 3rd November 2016 (Exam: Portfolio Management: Time 2h) -- 10.3.1 Solutions: Midterm Exam, November 2016 -- 10.4 Exam, January 2017 -- Master M1: Mido 11th January 2017 (Exam: Portfolio Management: Time 2h) -- 10.4.1 Solutions: Exam, January 2017 -- 10.5 Midterm Exam, November 2017 -- Master M1: Mido 2nd November 2017 (Midterm Exam: Portfolio Management: Time 2h) -- 10.5.1 Solutions: Midterm Exam, November 2017 -- 10.6 Exam, January 2018 -- Master M1: Mido 15th January 2018 (Exam: Portfolio Management: Time 2h) -- 10.6.1 Solutions: Exam, January 2018 -- 10.7 Midterm Exam, October 2018</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Master M1: Mido 29th October 2018 (Midterm Exam: Portfolio Management: Time 2h) -- 10.7.1 Solutions: Midterm Exam October 2018 -- A The Lagrangian -- A.1 Main Results -- A.1.1 Solution of the Markowitz Problem -- B Parametrisations -- B.1 Confidence Domain for an Estimator of M -- B.2 Confidence Domain for an Observation Ri -- Bibliography -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Portfolio management</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantitative Methode</subfield><subfield code="0">(DE-588)4232139-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantitative Methode</subfield><subfield code="0">(DE-588)4232139-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Brugière, Pierre</subfield><subfield code="t">Quantitative Portfolio Management</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030377397</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033603331</subfield></datafield></record></collection> |
id | DE-604.BV048222598 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:37Z |
indexdate | 2024-07-10T09:32:26Z |
institution | BVB |
isbn | 9783030377403 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033603331 |
oclc_num | 1148885924 |
open_access_boolean | |
physical | 1 Online-Ressource (212 pages) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Springer Texts in Business and Economics Ser |
spelling | Brugière, Pierre Verfasser aut Quantitative Portfolio Management With Applications in Python Cham Springer International Publishing AG 2020 ©2020 1 Online-Ressource (212 pages) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Business and Economics Ser Description based on publisher supplied metadata and other sources Intro -- Preface -- Contents -- 1 Returns and the Gaussian Hypothesis -- 1.1 Measure of the Performance -- 1.1.1 Return -- 1.1.2 Rate of Return -- 1.2 Probabilistic and Empirical Definitions -- 1.3 Goodness of Fit Tests -- 1.3.1 Example: Testing the Normality of the Returns of the DAX 30 -- 1.4 Further Statistical Results -- 1.4.1 Convergence of the Density Function Estimate -- 1.4.2 Tests Based on Cumulative Distribution Function Estimates -- 1.4.3 Tests Based on Order Statistics -- 1.4.4 Parameter Estimation and Confidence Intervals -- 1.5 Market Data with Python -- 1.5.1 Data Extraction for the DAX 30 -- 1.5.2 Statistical Analysis for the DAX 30 -- A Few References -- 2 Utility Functions and the Theory of Choice -- 2.1 Utility Functions and Preferred Investments -- 2.1.1 Risk Appetite and Concavity -- 2.2 Gaussian Laws and Mean-Variance Implications -- 2.3 Efficient Investment Strategies -- A Few References -- 3 The Markowitz Framework -- 3.1 Investment and Self-Financing Portfolios -- 3.1.1 Notations and Definitions -- 3.1.2 Representations of the Portfolios -- 3.1.3 Return of a Portfolio -- 3.2 Absence of Arbitrage Opportunities -- 3.2.1 Analysis of the Variance-Covariance Matrix -- 3.2.2 The Correlation Matrix -- 3.3 Multidimensional Estimations -- 3.3.1 Wishart, Hotelling's T2 and Fisher-Snedecor Distributions -- 3.3.2 Mean Vector and Variance-Covariance Matrix Estimates -- 3.3.3 Confidence Domain and Statistical Tests -- 3.4 Maket Data with Python -- A Few References -- 4 Markowitz Without a Risk-Free Asset -- 4.1 The Optimisation Problem -- 4.2 The Geometric Nature of the Set F(σ,m) -- 4.3 The Two Fund Theorem -- 4.3.1 Example with Two Assets: Importance of the Correlation -- 4.4 Alternative Parametrisation of F(σ, m) and Conclusion -- A Few References -- 5 Markowitz with a Risk-Free Asset -- 5.1 The Optimisation Problem 5.2 Capital Market Line and Limit Cone C(σ, m) -- 5.2.1 The Market Portfolio -- 5.2.2 The Tangent Portfolio -- 5.2.3 More Geometric Properties -- 5.3 The Security Market Line -- 5.3.1 The Security Market Line and ''Arbitrage'' Detections -- 5.4 Market Data with Python -- 5.4.1 The Frontier and Capital Market Line for the DAX 30 Components -- 5.4.2 Adding Additional Constraints -- 5.5 Stability of the Solutions -- 5.5.1 Stabilisation by Correlation Adjustment -- 5.6 The Bayesian Approach -- 5.6.1 Jeffrey's Prior μ0 on M and -- 5.6.2 Gaussian Prior μ0 on M -- 5.6.3 The Black-Litterman Model -- A Few References -- 6 Performance and Diversification Indicators -- 6.1 The Sharpe Ratio -- 6.2 The Jensen Index -- 6.3 The Treynor Index -- 6.4 Other Risk/Return Indicators -- 6.5 The Diversification Ratio -- A Few References -- 7 Risk Measures and Capital Allocation -- 7.1 Definition of a Risk Measure -- 7.2 Risk Measure in the Markowitz Framework -- 7.2.1 The Markowitz Risk Measure -- 7.2.2 Value at Risk -- 7.2.3 Expected Shortfall -- 7.3 Euler's Formula and Capital Allocation -- 7.3.1 Example of Risk Measure and Capital Allocation -- 7.4 Return on Risk-Adjusted Capital -- 7.4.1 Maximising the RORAC -- 7.4.2 Capital Allocation for a Positive Homogeneous Risk Measure -- 7.4.3 Example: Euler Allocation -- 7.4.4 Example: RORAC for Optimal Portfolios -- 7.4.5 Calculation of a Portfolio VaR, from Observed Asset Prices -- 7.4.6 Example: Boostrap Historical Simulation for a Portfolio VaR -- A Few References -- 8 Factor Models -- 8.1 Definitions and Notations -- 8.1.1 The Tangent Portfolio as a Factor -- 8.1.2 Endogenous and Exogenous Factors -- 8.1.3 Standard Form for a Factor Model -- 8.2 Identifying the Coefficients When the Factors Are Known -- 8.2.1 Regression on the Factors -- 8.3 Example of a Factor Model -- 8.4 APT Models -- 8.4.1 Example of an APT Model 8.4.2 Further Remarks -- 8.4.3 Standard Form for an APT Model -- 8.5 Alternative Definition of an APT Model -- 8.5.1 Estimation of the Risk Premia in an APT Model -- A Few References -- 9 Identification of the Factors -- 9.1 Total Inertia and Trace of the Variance-Covariance Matrix -- 9.2 Total Inertia of the Projection -- 9.3 Principal Component Analysis and Factors -- 9.3.1 PCA of the Matrix of Variance-Covariance -- 9.3.2 PCA of the Correlation Matrix -- 9.4 Principal Components and Eigenvalues Visualisation -- 9.5 Python: Application to the DAX 30 Components -- 9.5.1 Factors Explaining the Variance for the DAX 30 Components -- 9.5.2 Explanation of the Factors for the DAX 30 Components -- A Few References -- 10 Exercises and Problems -- 10.1 Midterm Exam, November 2015 -- Master M1: Mido 2nd November 2015 (Midterm Exam: Portfolio Management) -- 10.1.1 Solutions: Midterm Exam, November 2015 -- Master M1: Mido 2015-2016 (Midterm Exam: Portfolio Management) -- 10.2 Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management: Time 1h 30min) -- 10.2.1 Solutions: Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management) -- 10.3 Midterm Exam, November 2016 -- Master M1: Mido 3rd November 2016 (Exam: Portfolio Management: Time 2h) -- 10.3.1 Solutions: Midterm Exam, November 2016 -- 10.4 Exam, January 2017 -- Master M1: Mido 11th January 2017 (Exam: Portfolio Management: Time 2h) -- 10.4.1 Solutions: Exam, January 2017 -- 10.5 Midterm Exam, November 2017 -- Master M1: Mido 2nd November 2017 (Midterm Exam: Portfolio Management: Time 2h) -- 10.5.1 Solutions: Midterm Exam, November 2017 -- 10.6 Exam, January 2018 -- Master M1: Mido 15th January 2018 (Exam: Portfolio Management: Time 2h) -- 10.6.1 Solutions: Exam, January 2018 -- 10.7 Midterm Exam, October 2018 Master M1: Mido 29th October 2018 (Midterm Exam: Portfolio Management: Time 2h) -- 10.7.1 Solutions: Midterm Exam October 2018 -- A The Lagrangian -- A.1 Main Results -- A.1.1 Solution of the Markowitz Problem -- B Parametrisations -- B.1 Confidence Domain for an Estimator of M -- B.2 Confidence Domain for an Observation Ri -- Bibliography -- Index Portfolio management Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Finanzmathematik (DE-588)4017195-4 gnd rswk-swf Portfoliomanagement (DE-588)4115601-8 gnd rswk-swf Kapitalanlage (DE-588)4073213-7 gnd rswk-swf Quantitative Methode (DE-588)4232139-6 gnd rswk-swf Portfoliomanagement (DE-588)4115601-8 s Quantitative Methode (DE-588)4232139-6 s Kapitalanlage (DE-588)4073213-7 s Finanzmathematik (DE-588)4017195-4 s Python Programmiersprache (DE-588)4434275-5 s DE-604 Erscheint auch als Druck-Ausgabe Brugière, Pierre Quantitative Portfolio Management Cham : Springer International Publishing AG,c2020 9783030377397 |
spellingShingle | Brugière, Pierre Quantitative Portfolio Management With Applications in Python Intro -- Preface -- Contents -- 1 Returns and the Gaussian Hypothesis -- 1.1 Measure of the Performance -- 1.1.1 Return -- 1.1.2 Rate of Return -- 1.2 Probabilistic and Empirical Definitions -- 1.3 Goodness of Fit Tests -- 1.3.1 Example: Testing the Normality of the Returns of the DAX 30 -- 1.4 Further Statistical Results -- 1.4.1 Convergence of the Density Function Estimate -- 1.4.2 Tests Based on Cumulative Distribution Function Estimates -- 1.4.3 Tests Based on Order Statistics -- 1.4.4 Parameter Estimation and Confidence Intervals -- 1.5 Market Data with Python -- 1.5.1 Data Extraction for the DAX 30 -- 1.5.2 Statistical Analysis for the DAX 30 -- A Few References -- 2 Utility Functions and the Theory of Choice -- 2.1 Utility Functions and Preferred Investments -- 2.1.1 Risk Appetite and Concavity -- 2.2 Gaussian Laws and Mean-Variance Implications -- 2.3 Efficient Investment Strategies -- A Few References -- 3 The Markowitz Framework -- 3.1 Investment and Self-Financing Portfolios -- 3.1.1 Notations and Definitions -- 3.1.2 Representations of the Portfolios -- 3.1.3 Return of a Portfolio -- 3.2 Absence of Arbitrage Opportunities -- 3.2.1 Analysis of the Variance-Covariance Matrix -- 3.2.2 The Correlation Matrix -- 3.3 Multidimensional Estimations -- 3.3.1 Wishart, Hotelling's T2 and Fisher-Snedecor Distributions -- 3.3.2 Mean Vector and Variance-Covariance Matrix Estimates -- 3.3.3 Confidence Domain and Statistical Tests -- 3.4 Maket Data with Python -- A Few References -- 4 Markowitz Without a Risk-Free Asset -- 4.1 The Optimisation Problem -- 4.2 The Geometric Nature of the Set F(σ,m) -- 4.3 The Two Fund Theorem -- 4.3.1 Example with Two Assets: Importance of the Correlation -- 4.4 Alternative Parametrisation of F(σ, m) and Conclusion -- A Few References -- 5 Markowitz with a Risk-Free Asset -- 5.1 The Optimisation Problem 5.2 Capital Market Line and Limit Cone C(σ, m) -- 5.2.1 The Market Portfolio -- 5.2.2 The Tangent Portfolio -- 5.2.3 More Geometric Properties -- 5.3 The Security Market Line -- 5.3.1 The Security Market Line and ''Arbitrage'' Detections -- 5.4 Market Data with Python -- 5.4.1 The Frontier and Capital Market Line for the DAX 30 Components -- 5.4.2 Adding Additional Constraints -- 5.5 Stability of the Solutions -- 5.5.1 Stabilisation by Correlation Adjustment -- 5.6 The Bayesian Approach -- 5.6.1 Jeffrey's Prior μ0 on M and -- 5.6.2 Gaussian Prior μ0 on M -- 5.6.3 The Black-Litterman Model -- A Few References -- 6 Performance and Diversification Indicators -- 6.1 The Sharpe Ratio -- 6.2 The Jensen Index -- 6.3 The Treynor Index -- 6.4 Other Risk/Return Indicators -- 6.5 The Diversification Ratio -- A Few References -- 7 Risk Measures and Capital Allocation -- 7.1 Definition of a Risk Measure -- 7.2 Risk Measure in the Markowitz Framework -- 7.2.1 The Markowitz Risk Measure -- 7.2.2 Value at Risk -- 7.2.3 Expected Shortfall -- 7.3 Euler's Formula and Capital Allocation -- 7.3.1 Example of Risk Measure and Capital Allocation -- 7.4 Return on Risk-Adjusted Capital -- 7.4.1 Maximising the RORAC -- 7.4.2 Capital Allocation for a Positive Homogeneous Risk Measure -- 7.4.3 Example: Euler Allocation -- 7.4.4 Example: RORAC for Optimal Portfolios -- 7.4.5 Calculation of a Portfolio VaR, from Observed Asset Prices -- 7.4.6 Example: Boostrap Historical Simulation for a Portfolio VaR -- A Few References -- 8 Factor Models -- 8.1 Definitions and Notations -- 8.1.1 The Tangent Portfolio as a Factor -- 8.1.2 Endogenous and Exogenous Factors -- 8.1.3 Standard Form for a Factor Model -- 8.2 Identifying the Coefficients When the Factors Are Known -- 8.2.1 Regression on the Factors -- 8.3 Example of a Factor Model -- 8.4 APT Models -- 8.4.1 Example of an APT Model 8.4.2 Further Remarks -- 8.4.3 Standard Form for an APT Model -- 8.5 Alternative Definition of an APT Model -- 8.5.1 Estimation of the Risk Premia in an APT Model -- A Few References -- 9 Identification of the Factors -- 9.1 Total Inertia and Trace of the Variance-Covariance Matrix -- 9.2 Total Inertia of the Projection -- 9.3 Principal Component Analysis and Factors -- 9.3.1 PCA of the Matrix of Variance-Covariance -- 9.3.2 PCA of the Correlation Matrix -- 9.4 Principal Components and Eigenvalues Visualisation -- 9.5 Python: Application to the DAX 30 Components -- 9.5.1 Factors Explaining the Variance for the DAX 30 Components -- 9.5.2 Explanation of the Factors for the DAX 30 Components -- A Few References -- 10 Exercises and Problems -- 10.1 Midterm Exam, November 2015 -- Master M1: Mido 2nd November 2015 (Midterm Exam: Portfolio Management) -- 10.1.1 Solutions: Midterm Exam, November 2015 -- Master M1: Mido 2015-2016 (Midterm Exam: Portfolio Management) -- 10.2 Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management: Time 1h 30min) -- 10.2.1 Solutions: Exam, January 2016 -- Master M1: Mido 5th January 2016 (Exam: Portfolio Management) -- 10.3 Midterm Exam, November 2016 -- Master M1: Mido 3rd November 2016 (Exam: Portfolio Management: Time 2h) -- 10.3.1 Solutions: Midterm Exam, November 2016 -- 10.4 Exam, January 2017 -- Master M1: Mido 11th January 2017 (Exam: Portfolio Management: Time 2h) -- 10.4.1 Solutions: Exam, January 2017 -- 10.5 Midterm Exam, November 2017 -- Master M1: Mido 2nd November 2017 (Midterm Exam: Portfolio Management: Time 2h) -- 10.5.1 Solutions: Midterm Exam, November 2017 -- 10.6 Exam, January 2018 -- Master M1: Mido 15th January 2018 (Exam: Portfolio Management: Time 2h) -- 10.6.1 Solutions: Exam, January 2018 -- 10.7 Midterm Exam, October 2018 Master M1: Mido 29th October 2018 (Midterm Exam: Portfolio Management: Time 2h) -- 10.7.1 Solutions: Midterm Exam October 2018 -- A The Lagrangian -- A.1 Main Results -- A.1.1 Solution of the Markowitz Problem -- B Parametrisations -- B.1 Confidence Domain for an Estimator of M -- B.2 Confidence Domain for an Observation Ri -- Bibliography -- Index Portfolio management Python Programmiersprache (DE-588)4434275-5 gnd Finanzmathematik (DE-588)4017195-4 gnd Portfoliomanagement (DE-588)4115601-8 gnd Kapitalanlage (DE-588)4073213-7 gnd Quantitative Methode (DE-588)4232139-6 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4017195-4 (DE-588)4115601-8 (DE-588)4073213-7 (DE-588)4232139-6 |
title | Quantitative Portfolio Management With Applications in Python |
title_auth | Quantitative Portfolio Management With Applications in Python |
title_exact_search | Quantitative Portfolio Management With Applications in Python |
title_exact_search_txtP | Quantitative Portfolio Management With Applications in Python |
title_full | Quantitative Portfolio Management With Applications in Python |
title_fullStr | Quantitative Portfolio Management With Applications in Python |
title_full_unstemmed | Quantitative Portfolio Management With Applications in Python |
title_short | Quantitative Portfolio Management |
title_sort | quantitative portfolio management with applications in python |
title_sub | With Applications in Python |
topic | Portfolio management Python Programmiersprache (DE-588)4434275-5 gnd Finanzmathematik (DE-588)4017195-4 gnd Portfoliomanagement (DE-588)4115601-8 gnd Kapitalanlage (DE-588)4073213-7 gnd Quantitative Methode (DE-588)4232139-6 gnd |
topic_facet | Portfolio management Python Programmiersprache Finanzmathematik Portfoliomanagement Kapitalanlage Quantitative Methode |
work_keys_str_mv | AT brugierepierre quantitativeportfoliomanagementwithapplicationsinpython |