Nonlinear filters: theory and applications
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ, USA
Wiley
2022
|
Schlagworte: | |
Online-Zugang: | DE-Aug4 DE-573 DE-91 Volltext Volltext |
Beschreibung: | 1 Online-Ressource (xxii, 273 Seiten) |
ISBN: | 9781119078166 9781119078180 9781119078159 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048222001 | ||
003 | DE-604 | ||
005 | 20240603 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119078166 |9 978-1-119-07816-6 | ||
020 | |a 9781119078180 |9 978-1-119-07818-0 | ||
020 | |a 9781119078159 |9 9781119078159 | ||
024 | 7 | |a 10.1002/9781119078166 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6913237 | ||
035 | |a (ZDB-30-PAD)EBC6913237 | ||
035 | |a (ZDB-89-EBL)EBL6913237 | ||
035 | |a (OCoLC)1303087403 | ||
035 | |a (DE-599)BVBBV048222001 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 |a DE-573 |a DE-Aug4 | ||
082 | 0 | |a 519.544 | |
084 | |a ZN 5760 |0 (DE-625)157480: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Setoodeh, Peyman |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear filters |b theory and applications |c Peyman Setoodeh, Saeid Habibi, Simon Haykin |
264 | 1 | |a Hoboken, NJ, USA |b Wiley |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxii, 273 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Table -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 State of a Dynamic System -- 1.2 State Estimation -- 1.3 Construals of Computing -- 1.4 Statistical Modeling -- 1.5 Vision for the Book -- Chapter 2 Observability -- 2.1 Introduction -- 2.2 State‐Space Model -- 2.3 The Concept of Observability -- 2.4 Observability of Linear Time‐Invariant Systems -- 2.4.1 Continuous‐Time LTI Systems -- 2.4.2 Discrete‐Time LTI Systems -- 2.4.3 Discretization of LTI Systems -- 2.5 Observability of Linear Time‐Varying Systems -- 2.5.1 Continuous‐Time LTV Systems -- 2.5.2 Discrete‐Time LTV Systems -- 2.5.3 Discretization of LTV Systems -- 2.6 Observability of Nonlinear Systems -- 2.6.1 Continuous‐Time Nonlinear Systems -- 2.6.2 Discrete‐Time Nonlinear Systems -- 2.6.3 Discretization of Nonlinear Systems -- 2.7 Observability of Stochastic Systems -- 2.8 Degree of Observability -- 2.9 Invertibility -- 2.10 Concluding Remarks -- Chapter 3 Observers -- 3.1 Introduction -- 3.2 Luenberger Observer -- 3.3 Extended Luenberger‐Type Observer -- 3.4 Sliding‐Mode Observer -- 3.5 Unknown‐Input Observer -- 3.6 Concluding Remarks -- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering -- 4.1 Introduction -- 4.2 Bayes' Rule -- 4.3 Optimal Nonlinear Filtering -- 4.4 Fisher Information -- 4.5 Posterior Cramér-Rao Lower Bound -- 4.6 Concluding Remarks -- Chapter 5 Kalman Filter -- 5.1 Introduction -- 5.2 Kalman Filter -- 5.3 Kalman Smoother -- 5.4 Information Filter -- 5.5 Extended Kalman Filter -- 5.6 Extended Information Filter -- 5.7 Divided‐Difference Filter -- 5.8 Unscented Kalman Filter -- 5.9 Cubature Kalman Filter -- 5.10 Generalized PID Filter -- 5.11 Gaussian‐Sum Filter -- 5.12 Applications -- 5.12.1 Information Fusion -- 5.12.2 Augmented Reality | |
505 | 8 | |a 5.12.3 Urban Traffic Network -- 5.12.4 Cybersecurity of Power Systems -- 5.12.5 Incidence of Influenza -- 5.12.6 COVID‐19 Pandemic -- 5.13 Concluding Remarks -- Chapter 6 Particle Filter -- 6.1 Introduction -- 6.2 Monte Carlo Method -- 6.3 Importance Sampling -- 6.4 Sequential Importance Sampling -- 6.5 Resampling -- 6.6 Sample Impoverishment -- 6.7 Choosing the Proposal Distribution -- 6.8 Generic Particle Filter -- 6.9 Applications -- 6.9.1 Simultaneous Localization and Mapping -- 6.10 Concluding Remarks -- Chapter 7 Smooth Variable‐Structure Filter -- 7.1 Introduction -- 7.2 The Switching Gain -- 7.3 Stability Analysis -- 7.4 Smoothing Subspace -- 7.5 Filter Corrective Term for Linear Systems -- 7.6 Filter Corrective Term for Nonlinear Systems -- 7.7 Bias Compensation -- 7.8 The Secondary Performance Indicator -- 7.9 Second‐Order Smooth Variable Structure Filter -- 7.10 Optimal Smoothing Boundary Design -- 7.11 Combination of SVSF with Other Filters -- 7.12 Applications -- 7.12.1 Multiple Target Tracking -- 7.12.2 Battery State‐of‐Charge Estimation -- 7.12.3 Robotics -- 7.13 Concluding Remarks -- Chapter 8 Deep Learning -- 8.1 Introduction -- 8.2 Gradient Descent -- 8.3 Stochastic Gradient Descent -- 8.4 Natural Gradient Descent -- 8.5 Neural Networks -- 8.6 Backpropagation -- 8.7 Backpropagation Through Time -- 8.8 Regularization -- 8.9 Initialization -- 8.10 Convolutional Neural Network -- 8.11 Long Short‐Term Memory -- 8.12 Hebbian Learning -- 8.13 Gibbs Sampling -- 8.14 Boltzmann Machine -- 8.15 Autoencoder -- 8.16 Generative Adversarial Network -- 8.17 Transformer -- 8.18 Concluding Remarks -- Chapter 9 Deep Learning‐Based Filters -- 9.1 Introduction -- 9.2 Variational Inference -- 9.3 Amortized Variational Inference -- 9.4 Deep Kalman Filter -- 9.5 Backpropagation Kalman Filter -- 9.6 Differentiable Particle Filter | |
505 | 8 | |a 9.7 Deep Rao-Blackwellized Particle Filter -- 9.8 Deep Variational Bayes Filter -- 9.9 Kalman Variational Autoencoder -- 9.10 Deep Variational Information Bottleneck -- 9.11 Wasserstein Distributionally Robust Kalman Filter -- 9.12 Hierarchical Invertible Neural Transport -- 9.13 Applications -- 9.13.1 Prediction of Drug Effect -- 9.13.2 Autonomous Driving -- 9.14 Concluding Remarks -- Chapter 10 Expectation Maximization -- 10.1 Introduction -- 10.2 Expectation Maximization Algorithm -- 10.3 Particle Expectation Maximization -- 10.4 Expectation Maximization for Gaussian Mixture Models -- 10.5 Neural Expectation Maximization -- 10.6 Relational Neural Expectation Maximization -- 10.7 Variational Filtering Expectation Maximization -- 10.8 Amortized Variational Filtering Expectation Maximization -- 10.9 Applications -- 10.9.1 Stochastic Volatility -- 10.9.2 Physical Reasoning -- 10.9.3 Speech, Music, and Video Modeling -- 10.10 Concluding Remarks -- Chapter 11 Reinforcement Learning‐Based Filter -- 11.1 Introduction -- 11.2 Reinforcement Learning -- 11.3 Variational Inference as Reinforcement Learning -- 11.4 Application -- 11.4.1 Battery State‐of‐Charge Estimation -- 11.5 Concluding Remarks -- Chapter 12 Nonparametric Bayesian Models -- 12.1 Introduction -- 12.2 Parametric vs Nonparametric Models -- 12.3 Measure‐Theoretic Probability -- 12.4 Exchangeability -- 12.5 Kolmogorov Extension Theorem -- 12.6 Extension of Bayesian Models -- 12.7 Conjugacy -- 12.8 Construction of Nonparametric Bayesian Models -- 12.9 Posterior Computability -- 12.10 Algorithmic Sufficiency -- 12.11 Applications -- 12.11.1 Multiple Object Tracking -- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow -- 12.11.3 Analyzing Single‐Molecule Tracks -- 12.12 Concluding Remarks -- References -- Index -- EULA. | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Filter |0 (DE-588)4451051-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regelungstheorie |0 (DE-588)4122327-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares Filter |0 (DE-588)4451051-2 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 2 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 0 | 3 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 4 | |a Regelungstheorie |0 (DE-588)4122327-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Habibi, Saeid |e Verfasser |4 aut | |
700 | 1 | |a Haykin, Simon S. |d 1931- |e Verfasser |0 (DE-588)128698497 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-118-83581-4 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/9740330 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC |a ZDB-30-PQE |a ZDB-35-IWT | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/book/9740330 |l DE-573 |p ZDB-35-IWT |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6913237 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf_2024 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1805075414786244608 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Setoodeh, Peyman Habibi, Saeid Haykin, Simon S. 1931- |
author_GND | (DE-588)128698497 |
author_facet | Setoodeh, Peyman Habibi, Saeid Haykin, Simon S. 1931- |
author_role | aut aut aut |
author_sort | Setoodeh, Peyman |
author_variant | p s ps s h sh s s h ss ssh |
building | Verbundindex |
bvnumber | BV048222001 |
classification_rvk | ZN 5760 QH 237 SK 830 |
collection | ZDB-35-WIC ZDB-30-PQE ZDB-35-IWT |
contents | Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Table -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 State of a Dynamic System -- 1.2 State Estimation -- 1.3 Construals of Computing -- 1.4 Statistical Modeling -- 1.5 Vision for the Book -- Chapter 2 Observability -- 2.1 Introduction -- 2.2 State‐Space Model -- 2.3 The Concept of Observability -- 2.4 Observability of Linear Time‐Invariant Systems -- 2.4.1 Continuous‐Time LTI Systems -- 2.4.2 Discrete‐Time LTI Systems -- 2.4.3 Discretization of LTI Systems -- 2.5 Observability of Linear Time‐Varying Systems -- 2.5.1 Continuous‐Time LTV Systems -- 2.5.2 Discrete‐Time LTV Systems -- 2.5.3 Discretization of LTV Systems -- 2.6 Observability of Nonlinear Systems -- 2.6.1 Continuous‐Time Nonlinear Systems -- 2.6.2 Discrete‐Time Nonlinear Systems -- 2.6.3 Discretization of Nonlinear Systems -- 2.7 Observability of Stochastic Systems -- 2.8 Degree of Observability -- 2.9 Invertibility -- 2.10 Concluding Remarks -- Chapter 3 Observers -- 3.1 Introduction -- 3.2 Luenberger Observer -- 3.3 Extended Luenberger‐Type Observer -- 3.4 Sliding‐Mode Observer -- 3.5 Unknown‐Input Observer -- 3.6 Concluding Remarks -- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering -- 4.1 Introduction -- 4.2 Bayes' Rule -- 4.3 Optimal Nonlinear Filtering -- 4.4 Fisher Information -- 4.5 Posterior Cramér-Rao Lower Bound -- 4.6 Concluding Remarks -- Chapter 5 Kalman Filter -- 5.1 Introduction -- 5.2 Kalman Filter -- 5.3 Kalman Smoother -- 5.4 Information Filter -- 5.5 Extended Kalman Filter -- 5.6 Extended Information Filter -- 5.7 Divided‐Difference Filter -- 5.8 Unscented Kalman Filter -- 5.9 Cubature Kalman Filter -- 5.10 Generalized PID Filter -- 5.11 Gaussian‐Sum Filter -- 5.12 Applications -- 5.12.1 Information Fusion -- 5.12.2 Augmented Reality 5.12.3 Urban Traffic Network -- 5.12.4 Cybersecurity of Power Systems -- 5.12.5 Incidence of Influenza -- 5.12.6 COVID‐19 Pandemic -- 5.13 Concluding Remarks -- Chapter 6 Particle Filter -- 6.1 Introduction -- 6.2 Monte Carlo Method -- 6.3 Importance Sampling -- 6.4 Sequential Importance Sampling -- 6.5 Resampling -- 6.6 Sample Impoverishment -- 6.7 Choosing the Proposal Distribution -- 6.8 Generic Particle Filter -- 6.9 Applications -- 6.9.1 Simultaneous Localization and Mapping -- 6.10 Concluding Remarks -- Chapter 7 Smooth Variable‐Structure Filter -- 7.1 Introduction -- 7.2 The Switching Gain -- 7.3 Stability Analysis -- 7.4 Smoothing Subspace -- 7.5 Filter Corrective Term for Linear Systems -- 7.6 Filter Corrective Term for Nonlinear Systems -- 7.7 Bias Compensation -- 7.8 The Secondary Performance Indicator -- 7.9 Second‐Order Smooth Variable Structure Filter -- 7.10 Optimal Smoothing Boundary Design -- 7.11 Combination of SVSF with Other Filters -- 7.12 Applications -- 7.12.1 Multiple Target Tracking -- 7.12.2 Battery State‐of‐Charge Estimation -- 7.12.3 Robotics -- 7.13 Concluding Remarks -- Chapter 8 Deep Learning -- 8.1 Introduction -- 8.2 Gradient Descent -- 8.3 Stochastic Gradient Descent -- 8.4 Natural Gradient Descent -- 8.5 Neural Networks -- 8.6 Backpropagation -- 8.7 Backpropagation Through Time -- 8.8 Regularization -- 8.9 Initialization -- 8.10 Convolutional Neural Network -- 8.11 Long Short‐Term Memory -- 8.12 Hebbian Learning -- 8.13 Gibbs Sampling -- 8.14 Boltzmann Machine -- 8.15 Autoencoder -- 8.16 Generative Adversarial Network -- 8.17 Transformer -- 8.18 Concluding Remarks -- Chapter 9 Deep Learning‐Based Filters -- 9.1 Introduction -- 9.2 Variational Inference -- 9.3 Amortized Variational Inference -- 9.4 Deep Kalman Filter -- 9.5 Backpropagation Kalman Filter -- 9.6 Differentiable Particle Filter 9.7 Deep Rao-Blackwellized Particle Filter -- 9.8 Deep Variational Bayes Filter -- 9.9 Kalman Variational Autoencoder -- 9.10 Deep Variational Information Bottleneck -- 9.11 Wasserstein Distributionally Robust Kalman Filter -- 9.12 Hierarchical Invertible Neural Transport -- 9.13 Applications -- 9.13.1 Prediction of Drug Effect -- 9.13.2 Autonomous Driving -- 9.14 Concluding Remarks -- Chapter 10 Expectation Maximization -- 10.1 Introduction -- 10.2 Expectation Maximization Algorithm -- 10.3 Particle Expectation Maximization -- 10.4 Expectation Maximization for Gaussian Mixture Models -- 10.5 Neural Expectation Maximization -- 10.6 Relational Neural Expectation Maximization -- 10.7 Variational Filtering Expectation Maximization -- 10.8 Amortized Variational Filtering Expectation Maximization -- 10.9 Applications -- 10.9.1 Stochastic Volatility -- 10.9.2 Physical Reasoning -- 10.9.3 Speech, Music, and Video Modeling -- 10.10 Concluding Remarks -- Chapter 11 Reinforcement Learning‐Based Filter -- 11.1 Introduction -- 11.2 Reinforcement Learning -- 11.3 Variational Inference as Reinforcement Learning -- 11.4 Application -- 11.4.1 Battery State‐of‐Charge Estimation -- 11.5 Concluding Remarks -- Chapter 12 Nonparametric Bayesian Models -- 12.1 Introduction -- 12.2 Parametric vs Nonparametric Models -- 12.3 Measure‐Theoretic Probability -- 12.4 Exchangeability -- 12.5 Kolmogorov Extension Theorem -- 12.6 Extension of Bayesian Models -- 12.7 Conjugacy -- 12.8 Construction of Nonparametric Bayesian Models -- 12.9 Posterior Computability -- 12.10 Algorithmic Sufficiency -- 12.11 Applications -- 12.11.1 Multiple Object Tracking -- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow -- 12.11.3 Analyzing Single‐Molecule Tracks -- 12.12 Concluding Remarks -- References -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6913237 (ZDB-30-PAD)EBC6913237 (ZDB-89-EBL)EBL6913237 (OCoLC)1303087403 (DE-599)BVBBV048222001 |
dewey-full | 519.544 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.544 |
dewey-search | 519.544 |
dewey-sort | 3519.544 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048222001</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240603</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119078166</subfield><subfield code="9">978-1-119-07816-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119078180</subfield><subfield code="9">978-1-119-07818-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119078159</subfield><subfield code="9">9781119078159</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119078166</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6913237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6913237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6913237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1303087403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048222001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.544</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5760</subfield><subfield code="0">(DE-625)157480:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Setoodeh, Peyman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear filters</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Peyman Setoodeh, Saeid Habibi, Simon Haykin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA</subfield><subfield code="b">Wiley</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 273 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Table -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 State of a Dynamic System -- 1.2 State Estimation -- 1.3 Construals of Computing -- 1.4 Statistical Modeling -- 1.5 Vision for the Book -- Chapter 2 Observability -- 2.1 Introduction -- 2.2 State‐Space Model -- 2.3 The Concept of Observability -- 2.4 Observability of Linear Time‐Invariant Systems -- 2.4.1 Continuous‐Time LTI Systems -- 2.4.2 Discrete‐Time LTI Systems -- 2.4.3 Discretization of LTI Systems -- 2.5 Observability of Linear Time‐Varying Systems -- 2.5.1 Continuous‐Time LTV Systems -- 2.5.2 Discrete‐Time LTV Systems -- 2.5.3 Discretization of LTV Systems -- 2.6 Observability of Nonlinear Systems -- 2.6.1 Continuous‐Time Nonlinear Systems -- 2.6.2 Discrete‐Time Nonlinear Systems -- 2.6.3 Discretization of Nonlinear Systems -- 2.7 Observability of Stochastic Systems -- 2.8 Degree of Observability -- 2.9 Invertibility -- 2.10 Concluding Remarks -- Chapter 3 Observers -- 3.1 Introduction -- 3.2 Luenberger Observer -- 3.3 Extended Luenberger‐Type Observer -- 3.4 Sliding‐Mode Observer -- 3.5 Unknown‐Input Observer -- 3.6 Concluding Remarks -- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering -- 4.1 Introduction -- 4.2 Bayes' Rule -- 4.3 Optimal Nonlinear Filtering -- 4.4 Fisher Information -- 4.5 Posterior Cramér-Rao Lower Bound -- 4.6 Concluding Remarks -- Chapter 5 Kalman Filter -- 5.1 Introduction -- 5.2 Kalman Filter -- 5.3 Kalman Smoother -- 5.4 Information Filter -- 5.5 Extended Kalman Filter -- 5.6 Extended Information Filter -- 5.7 Divided‐Difference Filter -- 5.8 Unscented Kalman Filter -- 5.9 Cubature Kalman Filter -- 5.10 Generalized PID Filter -- 5.11 Gaussian‐Sum Filter -- 5.12 Applications -- 5.12.1 Information Fusion -- 5.12.2 Augmented Reality</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.12.3 Urban Traffic Network -- 5.12.4 Cybersecurity of Power Systems -- 5.12.5 Incidence of Influenza -- 5.12.6 COVID‐19 Pandemic -- 5.13 Concluding Remarks -- Chapter 6 Particle Filter -- 6.1 Introduction -- 6.2 Monte Carlo Method -- 6.3 Importance Sampling -- 6.4 Sequential Importance Sampling -- 6.5 Resampling -- 6.6 Sample Impoverishment -- 6.7 Choosing the Proposal Distribution -- 6.8 Generic Particle Filter -- 6.9 Applications -- 6.9.1 Simultaneous Localization and Mapping -- 6.10 Concluding Remarks -- Chapter 7 Smooth Variable‐Structure Filter -- 7.1 Introduction -- 7.2 The Switching Gain -- 7.3 Stability Analysis -- 7.4 Smoothing Subspace -- 7.5 Filter Corrective Term for Linear Systems -- 7.6 Filter Corrective Term for Nonlinear Systems -- 7.7 Bias Compensation -- 7.8 The Secondary Performance Indicator -- 7.9 Second‐Order Smooth Variable Structure Filter -- 7.10 Optimal Smoothing Boundary Design -- 7.11 Combination of SVSF with Other Filters -- 7.12 Applications -- 7.12.1 Multiple Target Tracking -- 7.12.2 Battery State‐of‐Charge Estimation -- 7.12.3 Robotics -- 7.13 Concluding Remarks -- Chapter 8 Deep Learning -- 8.1 Introduction -- 8.2 Gradient Descent -- 8.3 Stochastic Gradient Descent -- 8.4 Natural Gradient Descent -- 8.5 Neural Networks -- 8.6 Backpropagation -- 8.7 Backpropagation Through Time -- 8.8 Regularization -- 8.9 Initialization -- 8.10 Convolutional Neural Network -- 8.11 Long Short‐Term Memory -- 8.12 Hebbian Learning -- 8.13 Gibbs Sampling -- 8.14 Boltzmann Machine -- 8.15 Autoencoder -- 8.16 Generative Adversarial Network -- 8.17 Transformer -- 8.18 Concluding Remarks -- Chapter 9 Deep Learning‐Based Filters -- 9.1 Introduction -- 9.2 Variational Inference -- 9.3 Amortized Variational Inference -- 9.4 Deep Kalman Filter -- 9.5 Backpropagation Kalman Filter -- 9.6 Differentiable Particle Filter</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.7 Deep Rao-Blackwellized Particle Filter -- 9.8 Deep Variational Bayes Filter -- 9.9 Kalman Variational Autoencoder -- 9.10 Deep Variational Information Bottleneck -- 9.11 Wasserstein Distributionally Robust Kalman Filter -- 9.12 Hierarchical Invertible Neural Transport -- 9.13 Applications -- 9.13.1 Prediction of Drug Effect -- 9.13.2 Autonomous Driving -- 9.14 Concluding Remarks -- Chapter 10 Expectation Maximization -- 10.1 Introduction -- 10.2 Expectation Maximization Algorithm -- 10.3 Particle Expectation Maximization -- 10.4 Expectation Maximization for Gaussian Mixture Models -- 10.5 Neural Expectation Maximization -- 10.6 Relational Neural Expectation Maximization -- 10.7 Variational Filtering Expectation Maximization -- 10.8 Amortized Variational Filtering Expectation Maximization -- 10.9 Applications -- 10.9.1 Stochastic Volatility -- 10.9.2 Physical Reasoning -- 10.9.3 Speech, Music, and Video Modeling -- 10.10 Concluding Remarks -- Chapter 11 Reinforcement Learning‐Based Filter -- 11.1 Introduction -- 11.2 Reinforcement Learning -- 11.3 Variational Inference as Reinforcement Learning -- 11.4 Application -- 11.4.1 Battery State‐of‐Charge Estimation -- 11.5 Concluding Remarks -- Chapter 12 Nonparametric Bayesian Models -- 12.1 Introduction -- 12.2 Parametric vs Nonparametric Models -- 12.3 Measure‐Theoretic Probability -- 12.4 Exchangeability -- 12.5 Kolmogorov Extension Theorem -- 12.6 Extension of Bayesian Models -- 12.7 Conjugacy -- 12.8 Construction of Nonparametric Bayesian Models -- 12.9 Posterior Computability -- 12.10 Algorithmic Sufficiency -- 12.11 Applications -- 12.11.1 Multiple Object Tracking -- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow -- 12.11.3 Analyzing Single‐Molecule Tracks -- 12.12 Concluding Remarks -- References -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Filter</subfield><subfield code="0">(DE-588)4451051-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares Filter</subfield><subfield code="0">(DE-588)4451051-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Habibi, Saeid</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haykin, Simon S.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128698497</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-118-83581-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9740330</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-IWT</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9740330</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-IWT</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6913237</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf_2024</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048222001 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:33Z |
indexdate | 2024-07-20T05:41:01Z |
institution | BVB |
isbn | 9781119078166 9781119078180 9781119078159 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602738 |
oclc_num | 1303087403 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 DE-573 DE-Aug4 |
owner_facet | DE-91 DE-BY-TUM DE-83 DE-573 DE-Aug4 |
physical | 1 Online-Ressource (xxii, 273 Seiten) |
psigel | ZDB-35-WIC ZDB-30-PQE ZDB-35-IWT ZDB-35-WIC FHA_PDA_WIC_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf_2024 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley |
record_format | marc |
spelling | Setoodeh, Peyman Verfasser aut Nonlinear filters theory and applications Peyman Setoodeh, Saeid Habibi, Simon Haykin Hoboken, NJ, USA Wiley 2022 © 2022 1 Online-Ressource (xxii, 273 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Table -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 State of a Dynamic System -- 1.2 State Estimation -- 1.3 Construals of Computing -- 1.4 Statistical Modeling -- 1.5 Vision for the Book -- Chapter 2 Observability -- 2.1 Introduction -- 2.2 State‐Space Model -- 2.3 The Concept of Observability -- 2.4 Observability of Linear Time‐Invariant Systems -- 2.4.1 Continuous‐Time LTI Systems -- 2.4.2 Discrete‐Time LTI Systems -- 2.4.3 Discretization of LTI Systems -- 2.5 Observability of Linear Time‐Varying Systems -- 2.5.1 Continuous‐Time LTV Systems -- 2.5.2 Discrete‐Time LTV Systems -- 2.5.3 Discretization of LTV Systems -- 2.6 Observability of Nonlinear Systems -- 2.6.1 Continuous‐Time Nonlinear Systems -- 2.6.2 Discrete‐Time Nonlinear Systems -- 2.6.3 Discretization of Nonlinear Systems -- 2.7 Observability of Stochastic Systems -- 2.8 Degree of Observability -- 2.9 Invertibility -- 2.10 Concluding Remarks -- Chapter 3 Observers -- 3.1 Introduction -- 3.2 Luenberger Observer -- 3.3 Extended Luenberger‐Type Observer -- 3.4 Sliding‐Mode Observer -- 3.5 Unknown‐Input Observer -- 3.6 Concluding Remarks -- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering -- 4.1 Introduction -- 4.2 Bayes' Rule -- 4.3 Optimal Nonlinear Filtering -- 4.4 Fisher Information -- 4.5 Posterior Cramér-Rao Lower Bound -- 4.6 Concluding Remarks -- Chapter 5 Kalman Filter -- 5.1 Introduction -- 5.2 Kalman Filter -- 5.3 Kalman Smoother -- 5.4 Information Filter -- 5.5 Extended Kalman Filter -- 5.6 Extended Information Filter -- 5.7 Divided‐Difference Filter -- 5.8 Unscented Kalman Filter -- 5.9 Cubature Kalman Filter -- 5.10 Generalized PID Filter -- 5.11 Gaussian‐Sum Filter -- 5.12 Applications -- 5.12.1 Information Fusion -- 5.12.2 Augmented Reality 5.12.3 Urban Traffic Network -- 5.12.4 Cybersecurity of Power Systems -- 5.12.5 Incidence of Influenza -- 5.12.6 COVID‐19 Pandemic -- 5.13 Concluding Remarks -- Chapter 6 Particle Filter -- 6.1 Introduction -- 6.2 Monte Carlo Method -- 6.3 Importance Sampling -- 6.4 Sequential Importance Sampling -- 6.5 Resampling -- 6.6 Sample Impoverishment -- 6.7 Choosing the Proposal Distribution -- 6.8 Generic Particle Filter -- 6.9 Applications -- 6.9.1 Simultaneous Localization and Mapping -- 6.10 Concluding Remarks -- Chapter 7 Smooth Variable‐Structure Filter -- 7.1 Introduction -- 7.2 The Switching Gain -- 7.3 Stability Analysis -- 7.4 Smoothing Subspace -- 7.5 Filter Corrective Term for Linear Systems -- 7.6 Filter Corrective Term for Nonlinear Systems -- 7.7 Bias Compensation -- 7.8 The Secondary Performance Indicator -- 7.9 Second‐Order Smooth Variable Structure Filter -- 7.10 Optimal Smoothing Boundary Design -- 7.11 Combination of SVSF with Other Filters -- 7.12 Applications -- 7.12.1 Multiple Target Tracking -- 7.12.2 Battery State‐of‐Charge Estimation -- 7.12.3 Robotics -- 7.13 Concluding Remarks -- Chapter 8 Deep Learning -- 8.1 Introduction -- 8.2 Gradient Descent -- 8.3 Stochastic Gradient Descent -- 8.4 Natural Gradient Descent -- 8.5 Neural Networks -- 8.6 Backpropagation -- 8.7 Backpropagation Through Time -- 8.8 Regularization -- 8.9 Initialization -- 8.10 Convolutional Neural Network -- 8.11 Long Short‐Term Memory -- 8.12 Hebbian Learning -- 8.13 Gibbs Sampling -- 8.14 Boltzmann Machine -- 8.15 Autoencoder -- 8.16 Generative Adversarial Network -- 8.17 Transformer -- 8.18 Concluding Remarks -- Chapter 9 Deep Learning‐Based Filters -- 9.1 Introduction -- 9.2 Variational Inference -- 9.3 Amortized Variational Inference -- 9.4 Deep Kalman Filter -- 9.5 Backpropagation Kalman Filter -- 9.6 Differentiable Particle Filter 9.7 Deep Rao-Blackwellized Particle Filter -- 9.8 Deep Variational Bayes Filter -- 9.9 Kalman Variational Autoencoder -- 9.10 Deep Variational Information Bottleneck -- 9.11 Wasserstein Distributionally Robust Kalman Filter -- 9.12 Hierarchical Invertible Neural Transport -- 9.13 Applications -- 9.13.1 Prediction of Drug Effect -- 9.13.2 Autonomous Driving -- 9.14 Concluding Remarks -- Chapter 10 Expectation Maximization -- 10.1 Introduction -- 10.2 Expectation Maximization Algorithm -- 10.3 Particle Expectation Maximization -- 10.4 Expectation Maximization for Gaussian Mixture Models -- 10.5 Neural Expectation Maximization -- 10.6 Relational Neural Expectation Maximization -- 10.7 Variational Filtering Expectation Maximization -- 10.8 Amortized Variational Filtering Expectation Maximization -- 10.9 Applications -- 10.9.1 Stochastic Volatility -- 10.9.2 Physical Reasoning -- 10.9.3 Speech, Music, and Video Modeling -- 10.10 Concluding Remarks -- Chapter 11 Reinforcement Learning‐Based Filter -- 11.1 Introduction -- 11.2 Reinforcement Learning -- 11.3 Variational Inference as Reinforcement Learning -- 11.4 Application -- 11.4.1 Battery State‐of‐Charge Estimation -- 11.5 Concluding Remarks -- Chapter 12 Nonparametric Bayesian Models -- 12.1 Introduction -- 12.2 Parametric vs Nonparametric Models -- 12.3 Measure‐Theoretic Probability -- 12.4 Exchangeability -- 12.5 Kolmogorov Extension Theorem -- 12.6 Extension of Bayesian Models -- 12.7 Conjugacy -- 12.8 Construction of Nonparametric Bayesian Models -- 12.9 Posterior Computability -- 12.10 Algorithmic Sufficiency -- 12.11 Applications -- 12.11.1 Multiple Object Tracking -- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow -- 12.11.3 Analyzing Single‐Molecule Tracks -- 12.12 Concluding Remarks -- References -- Index -- EULA. Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Nichtlineares Filter (DE-588)4451051-2 gnd rswk-swf Regelungstheorie (DE-588)4122327-5 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Nichtlineares Filter (DE-588)4451051-2 s Algorithmus (DE-588)4001183-5 s Signalverarbeitung (DE-588)4054947-1 s Künstliche Intelligenz (DE-588)4033447-8 s Regelungstheorie (DE-588)4122327-5 s DE-604 Habibi, Saeid Verfasser aut Haykin, Simon S. 1931- Verfasser (DE-588)128698497 aut Erscheint auch als Druck-Ausgabe 978-1-118-83581-4 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166 Verlag URL des Erstveröffentlichers Volltext https://ieeexplore.ieee.org/book/9740330 Aggregator URL des Erstveröffentlichers Volltext |
spellingShingle | Setoodeh, Peyman Habibi, Saeid Haykin, Simon S. 1931- Nonlinear filters theory and applications Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Table -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 State of a Dynamic System -- 1.2 State Estimation -- 1.3 Construals of Computing -- 1.4 Statistical Modeling -- 1.5 Vision for the Book -- Chapter 2 Observability -- 2.1 Introduction -- 2.2 State‐Space Model -- 2.3 The Concept of Observability -- 2.4 Observability of Linear Time‐Invariant Systems -- 2.4.1 Continuous‐Time LTI Systems -- 2.4.2 Discrete‐Time LTI Systems -- 2.4.3 Discretization of LTI Systems -- 2.5 Observability of Linear Time‐Varying Systems -- 2.5.1 Continuous‐Time LTV Systems -- 2.5.2 Discrete‐Time LTV Systems -- 2.5.3 Discretization of LTV Systems -- 2.6 Observability of Nonlinear Systems -- 2.6.1 Continuous‐Time Nonlinear Systems -- 2.6.2 Discrete‐Time Nonlinear Systems -- 2.6.3 Discretization of Nonlinear Systems -- 2.7 Observability of Stochastic Systems -- 2.8 Degree of Observability -- 2.9 Invertibility -- 2.10 Concluding Remarks -- Chapter 3 Observers -- 3.1 Introduction -- 3.2 Luenberger Observer -- 3.3 Extended Luenberger‐Type Observer -- 3.4 Sliding‐Mode Observer -- 3.5 Unknown‐Input Observer -- 3.6 Concluding Remarks -- Chapter 4 Bayesian Paradigm and Optimal Nonlinear Filtering -- 4.1 Introduction -- 4.2 Bayes' Rule -- 4.3 Optimal Nonlinear Filtering -- 4.4 Fisher Information -- 4.5 Posterior Cramér-Rao Lower Bound -- 4.6 Concluding Remarks -- Chapter 5 Kalman Filter -- 5.1 Introduction -- 5.2 Kalman Filter -- 5.3 Kalman Smoother -- 5.4 Information Filter -- 5.5 Extended Kalman Filter -- 5.6 Extended Information Filter -- 5.7 Divided‐Difference Filter -- 5.8 Unscented Kalman Filter -- 5.9 Cubature Kalman Filter -- 5.10 Generalized PID Filter -- 5.11 Gaussian‐Sum Filter -- 5.12 Applications -- 5.12.1 Information Fusion -- 5.12.2 Augmented Reality 5.12.3 Urban Traffic Network -- 5.12.4 Cybersecurity of Power Systems -- 5.12.5 Incidence of Influenza -- 5.12.6 COVID‐19 Pandemic -- 5.13 Concluding Remarks -- Chapter 6 Particle Filter -- 6.1 Introduction -- 6.2 Monte Carlo Method -- 6.3 Importance Sampling -- 6.4 Sequential Importance Sampling -- 6.5 Resampling -- 6.6 Sample Impoverishment -- 6.7 Choosing the Proposal Distribution -- 6.8 Generic Particle Filter -- 6.9 Applications -- 6.9.1 Simultaneous Localization and Mapping -- 6.10 Concluding Remarks -- Chapter 7 Smooth Variable‐Structure Filter -- 7.1 Introduction -- 7.2 The Switching Gain -- 7.3 Stability Analysis -- 7.4 Smoothing Subspace -- 7.5 Filter Corrective Term for Linear Systems -- 7.6 Filter Corrective Term for Nonlinear Systems -- 7.7 Bias Compensation -- 7.8 The Secondary Performance Indicator -- 7.9 Second‐Order Smooth Variable Structure Filter -- 7.10 Optimal Smoothing Boundary Design -- 7.11 Combination of SVSF with Other Filters -- 7.12 Applications -- 7.12.1 Multiple Target Tracking -- 7.12.2 Battery State‐of‐Charge Estimation -- 7.12.3 Robotics -- 7.13 Concluding Remarks -- Chapter 8 Deep Learning -- 8.1 Introduction -- 8.2 Gradient Descent -- 8.3 Stochastic Gradient Descent -- 8.4 Natural Gradient Descent -- 8.5 Neural Networks -- 8.6 Backpropagation -- 8.7 Backpropagation Through Time -- 8.8 Regularization -- 8.9 Initialization -- 8.10 Convolutional Neural Network -- 8.11 Long Short‐Term Memory -- 8.12 Hebbian Learning -- 8.13 Gibbs Sampling -- 8.14 Boltzmann Machine -- 8.15 Autoencoder -- 8.16 Generative Adversarial Network -- 8.17 Transformer -- 8.18 Concluding Remarks -- Chapter 9 Deep Learning‐Based Filters -- 9.1 Introduction -- 9.2 Variational Inference -- 9.3 Amortized Variational Inference -- 9.4 Deep Kalman Filter -- 9.5 Backpropagation Kalman Filter -- 9.6 Differentiable Particle Filter 9.7 Deep Rao-Blackwellized Particle Filter -- 9.8 Deep Variational Bayes Filter -- 9.9 Kalman Variational Autoencoder -- 9.10 Deep Variational Information Bottleneck -- 9.11 Wasserstein Distributionally Robust Kalman Filter -- 9.12 Hierarchical Invertible Neural Transport -- 9.13 Applications -- 9.13.1 Prediction of Drug Effect -- 9.13.2 Autonomous Driving -- 9.14 Concluding Remarks -- Chapter 10 Expectation Maximization -- 10.1 Introduction -- 10.2 Expectation Maximization Algorithm -- 10.3 Particle Expectation Maximization -- 10.4 Expectation Maximization for Gaussian Mixture Models -- 10.5 Neural Expectation Maximization -- 10.6 Relational Neural Expectation Maximization -- 10.7 Variational Filtering Expectation Maximization -- 10.8 Amortized Variational Filtering Expectation Maximization -- 10.9 Applications -- 10.9.1 Stochastic Volatility -- 10.9.2 Physical Reasoning -- 10.9.3 Speech, Music, and Video Modeling -- 10.10 Concluding Remarks -- Chapter 11 Reinforcement Learning‐Based Filter -- 11.1 Introduction -- 11.2 Reinforcement Learning -- 11.3 Variational Inference as Reinforcement Learning -- 11.4 Application -- 11.4.1 Battery State‐of‐Charge Estimation -- 11.5 Concluding Remarks -- Chapter 12 Nonparametric Bayesian Models -- 12.1 Introduction -- 12.2 Parametric vs Nonparametric Models -- 12.3 Measure‐Theoretic Probability -- 12.4 Exchangeability -- 12.5 Kolmogorov Extension Theorem -- 12.6 Extension of Bayesian Models -- 12.7 Conjugacy -- 12.8 Construction of Nonparametric Bayesian Models -- 12.9 Posterior Computability -- 12.10 Algorithmic Sufficiency -- 12.11 Applications -- 12.11.1 Multiple Object Tracking -- 12.11.2 Data‐Driven Probabilistic Optimal Power Flow -- 12.11.3 Analyzing Single‐Molecule Tracks -- 12.12 Concluding Remarks -- References -- Index -- EULA. Künstliche Intelligenz (DE-588)4033447-8 gnd Signalverarbeitung (DE-588)4054947-1 gnd Nichtlineares Filter (DE-588)4451051-2 gnd Regelungstheorie (DE-588)4122327-5 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4054947-1 (DE-588)4451051-2 (DE-588)4122327-5 (DE-588)4001183-5 |
title | Nonlinear filters theory and applications |
title_auth | Nonlinear filters theory and applications |
title_exact_search | Nonlinear filters theory and applications |
title_exact_search_txtP | Nonlinear filters theory and applications |
title_full | Nonlinear filters theory and applications Peyman Setoodeh, Saeid Habibi, Simon Haykin |
title_fullStr | Nonlinear filters theory and applications Peyman Setoodeh, Saeid Habibi, Simon Haykin |
title_full_unstemmed | Nonlinear filters theory and applications Peyman Setoodeh, Saeid Habibi, Simon Haykin |
title_short | Nonlinear filters |
title_sort | nonlinear filters theory and applications |
title_sub | theory and applications |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Signalverarbeitung (DE-588)4054947-1 gnd Nichtlineares Filter (DE-588)4451051-2 gnd Regelungstheorie (DE-588)4122327-5 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Künstliche Intelligenz Signalverarbeitung Nichtlineares Filter Regelungstheorie Algorithmus |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119078166 https://ieeexplore.ieee.org/book/9740330 |
work_keys_str_mv | AT setoodehpeyman nonlinearfilterstheoryandapplications AT habibisaeid nonlinearfilterstheoryandapplications AT haykinsimons nonlinearfilterstheoryandapplications |