Hybrid power cycle arrangements for lower emissions:
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Schriftenreihe: | Science, technology, and management series
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (viii, 298 Seiten) Illustrationen, Diagramme, Pläne |
ISBN: | 9781000566659 9781003213741 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221997 | ||
003 | DE-604 | ||
005 | 20230807 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000566659 |9 978-1-00-056665-9 | ||
020 | |a 9781003213741 |9 978-1-003-21374-1 | ||
035 | |a (ZDB-30-PQE)EBC6913161 | ||
035 | |a (ZDB-30-PAD)EBC6913161 | ||
035 | |a (ZDB-89-EBL)EBL6913161 | ||
035 | |a (OCoLC)1319630584 | ||
035 | |a (DE-599)BVBBV048221997 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a ZP 3200 |0 (DE-625)157941: |2 rvk | ||
245 | 1 | 0 | |a Hybrid power cycle arrangements for lower emissions |c edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (viii, 298 Seiten) |b Illustrationen, Diagramme, Pläne | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Science, technology, and management series | |
505 | 8 | |a Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Contributors -- Chapter 1 Hybrid Power Cycle: An Introduction -- 1.1 Introduction -- 1.2 Combined Cycle -- 1.3 Hybrid Solar Assisted Combined Cooling, Heating, and Power -- 1.4 Solid Oxide Fuel Cell-Based Hybrid Systems -- 1.4.1 Molten Carbonate Fuel Cell-Based Microturbine Hybrid Power Cycle -- 1.5 Geothermal Energy-Based Hybrid Power Systems -- References -- Chapter 2 Geothermal-Based Power System Integrated With Kalina and Organic Rankine Cycle -- 2.1 Introduction -- 2.1.1 The Worldwide Availability and Potential of Geothermal Energy Sources -- 2.1.2 Techno-Economic-Environmental Comparison -- 2.2 Multi-Criteria Optimization -- 2.2.1 Contributions of this Chapter -- 2.3 Selection and Description of Proposed System Configurations -- 2.3.1 Methodology -- 2.3.2 Thermodynamic Analysis -- 2.3.3 Exergoeconomic Analysis -- 2.3.4 Optimization Procedure -- 2.4 Results and Discussion -- 2.5 Summary -- References -- Chapter 3 Integrated Gasification Combined Cycle With Co-Gasification -- 3.1 Introduction -- 3.2 Thermo-Chemical Evaluation of Coal Gasifier -- 3.3 Results and Discussions -- 3.4 Summary -- Acknowledgment -- Nomenclature and Abbreviations -- References -- Chapter 4 Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Powered By Solar Thermal Energy -- 4.1 Introduction -- 4.1.1 Overview of Thermodynamic Power Conversion Cycles -- 4.1.2 Subcritical Thermodynamic Cycle -- 4.1.3 Transcritical Thermodynamic Cycle -- 4.1.4 Supercritical Thermodynamic Cycle -- 4.2 Heat Sources Suitable With S-CO< -- sub> -- 2< -- /sub> -- Cycle -- 4.2.1 Concentrating Solar Power (CSP) Sources -- 4.2.2 Nuclear Reactors -- 4.2.3 Waste Heat Recovery (WHR) -- 4.2.3.1 Industrial Waste Heat -- 4.2.3.2 Internal Combustion Engine (ICE) -- 4.2.3.3 Fuel Cells | |
505 | 8 | |a 4.2.4 Geothermal Energy -- 4.2.5 Coal -- 4.2.6 Biomass -- 4.2.7 Cryogenic Fuel -- 4.3 Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.4 Merits of Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.5 Thermophysical Properties of Supercritical CO< -- sub> -- 2< -- /sub> -- -- 4.6 Layouts of Different Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Configurations -- 4.7 Review of Literature -- 4.8 Methodology -- 4.8.1 Cycle Description and Input Parameters -- 4.8.1.1 Assumptions -- 4.8.2 Mathematical Model -- 4.8.2.1 Turbine -- 4.8.2.2 Compressor -- 4.8.3 Exergy Model -- 4.8.3.1 Exergy Balance Equations for Components of Cycle -- 4.9 Results and Discussion -- 4.9.1 Effect of Input Parameters On Exergetic Destruction Rate of Individual Component -- 4.9.1.1 Effect of Compressor Inlet Temperature -- 4.9.1.2 Effect of Turbine Inlet Temperature -- 4.9.1.3 Effect of Pressure Ratio -- 4.9.2 Effect of Various Input Parameters On Exergetic Efficiency -- 4.9.2.1 Effect of TIT -- 4.9.2.2 Effect of Compressor Inlet Temperature at Different Turbine Inlet Temperature -- 4.9.2.3 Effect of Pressure Ratio at Various Compressor Inlet Temperature -- 4.9.2.4 Effect of Pressure Ratio at Different Turbine Inlet Temperature -- 4.9.3 Effect of Various Input Parameters On Performance of Turbomachinery -- 4.9.3.1 Effect of Turbine Inlet Pressure Or Maximum Cycle Pressure -- 4.9.3.2 Effect of Intermediate Pressure -- 4.9.3.4 Effect of Pressure Ratio -- 4.10 Summary -- References -- Chapter 5 Integrated Fuel Cell Hybrid Technology -- 5.1 Introduction -- 5.2 Research Methodology -- 5.3 Description of Fuel Cell -- 5.4 Integrated Technologies -- 5.4.1 Gasification-SOFC -- 5.4.2 SOFC-GT -- 5.4.3 Pressurized SOFC-GT -- 5.4.4 Non-Pressurized SOFC-GT -- 5.4.5 SOFC-CHP -- 5.4.6 SOFC-Trigeneration | |
505 | 8 | |a 5.4.7 SOFC-GT-Absorption Chillers -- 5.4.8 SOFC-PV -- 5.4.9 Future Scope and Challenges -- 5.5 Conclusions and Future Challenging Prospects -- Abbreviations -- References -- Chapter 6 CHP Coupled With a SOFC Plant -- 6.1 Introduction -- 6.2 Thermodynamic Modeling -- 6.3 Methods and Materials -- 6.4 Results and Discussion -- 6.5 Summary -- Abbreviations -- References -- Chapter 7 Fuel Cell Hybrid Power System -- 7.1 Introduction -- 7.2 Fuel Cell -- 7.3 Solar Panel -- 7.3.1 Battery -- 7.4 Integration of Fuel Cell and Battery -- 7.5 Integration of Fuel Cell and PV Cells -- 7.5.1 Integration of Fuel Cell, PV Cell, and Battery -- 7.6 Integration of Fuel Cell, PV Cell, and Wind -- 7.7 Integration of Fuel Cell and Gas Turbine -- 7.8 Integration of Fuel Cell and CHP -- 7.9 Conclusion and Future Scope -- Abbreviations -- References -- Chapter 8 Solid Oxide Fuel Cell Integrated Blade Cooled Gas Turbine Hybrid Power Cycle -- 8.1 Introduction -- 8.2 System Description -- 8.3 Modeling and Simulation -- 8.3.1 Compressor -- 8.3.2 Intercooler -- 8.3.3 Recuperator -- 8.3.4 Fuel Cell (SOFC) -- 8.3.5 Blade Cooled Gas Turbine -- 8.3.6 Combustion Chamber -- 8.4 Result and Discussion -- 8.4.1 Validation -- 8.4.2 Influence of TIT On Blade Coolant Requirement -- 8.4.3 Sensitivity Analysis -- 8.4.4 Effect of Fuel Utilization Ratio and Recirculation Ratio -- 8.4.5 Effect of Fuel Utilization Ratio and Recirculation Ratio On Fuel Cell Performance -- 8.4.6 Influence of Compression Ratio (Rp,c) -- 8.4.7 Influence of Turbine Inlet Temperature (TIT) On Plant Specific Work -- 8.4.8 Influence of Turbine Inlet Temperature (TIT) On Hybrid Efficiency -- 8.4.9 Comparative Analysis of Power-Generating Units -- 8.4.10 Specific Fuel Consumption Within SOFC-ICGT Hybrid Cycle -- 8.4.11 Performance Map -- 8.5 Summary -- Nomenclature -- References | |
505 | 8 | |a Chapter 9 Municipal Solid Waste-Fueled Plants -- 9.1 Introduction -- 9.2 System Description and Assumptions -- 9.3 Modeling -- 9.3.1 Thermodynamic Evaluation -- 9.3.1.1 Waste Gasifier -- 9.3.1.2 Combustion Chamber -- 9.3.1.3 Thermoelectric Generator -- 9.3.1.4 Exergoeconomic Evaluation -- 9.3.1.5 Performance Criteria -- 9.3.1.6 Multi-Criteria Genetic Optimization -- 9.4 Results and Discussion -- 9.5 Conclusion -- Nomenclature and Abbreviations -- References -- Chapter 10 4E-Analysis of Sustainable Hybrid Tri-Generation System -- 10.1 Introduction -- 10.2 Description of the Proposed System -- 10.3 Methodology: Thermodynamic Modeling -- 10.3.1 WI Power Plant -- 10.3.2 Absorption Chiller -- 10.3.3 Solar Evacuated Thermal Collector -- 10.3.4 Economic Analysis -- 10.3.5 Environmental Analysis -- 10.3.6 Exergy Analysis -- 10.4 Multi-Objective Optimization -- 10.5 Case Study and the Challenges -- 10.6 Methodology -- 10.7 Results and Discussion -- 10.8 Summary -- References -- Chapter 11 Trigeneration System: Exergoeconomic and Environmental Analysis -- 11.1 Introduction -- 11.2 System Description -- 11.3 Modeling -- 11.3.1 Assumptions -- 11.4 Energy Analysis -- 11.4.1 Modeling of IRGT Cycle -- 11.4.2 Modeling of HRSG -- 11.4.3 Modeling of ORC -- 11.4.4 Modeling of ARS -- 11.5 Exergy Analysis -- 11.6 Exergoeconomic Analysis -- 11.7 Environmental Analysis -- 11.8 Overall Performance Criteria -- 11.8.1 Total Energy Efficiency (ɳtot) -- 11.8.2 Total Exergy Efficiency (εtot) -- 11.8.3 Total Cost Rate (Ċ< -- sub> -- tot< -- /sub> -- ) -- 11.8.4 Specific CO< -- sub> -- 2< -- /sub> -- Emission (S< -- sub> -- CO< -- sub> -- 2< -- /sub> -- < -- /sub> -- ) -- 11.9 Results and Discussion -- 11.9.1 Model Validation -- 11.9.2 Energy Results -- 11.9.3 Exergy Results -- 11.9.4 Exergoeconomic Results -- 11.9.5 Environmental Results | |
505 | 8 | |a 11.10 Parametric Results -- 11.10.1 Effect of Overall Compressor Ratio -- 11.10.2 Effect of AC Isentropic Efficiency -- 11.10.3 Effect of GT Isentropic Efficiency -- 11.11 Summary -- References -- Chapter 12 Organic Rankine Cycle Integrated Hybrid Arrangement for Power Generation -- 12.1 Introduction -- 12.2 Plant Layout -- 12.3 Single Pressure Level ORC -- 12.3.1 Subcritical ORC -- 12.3.2 Supercritical/transcritical ORC -- 12.4 Multi-Pressure Level -- 12.4.1 Subcritical ORC Multi-Pressure Level -- 12.4.2 Supercritical ORC Multi-Pressure Level -- 12.5 ORC Components -- 12.5.1 Turbine -- 12.5.2 Condenser -- 12.5.3 Pump -- 12.5.4 Boiler and Evaporators -- 12.6 ORC Applications -- 12.6.1 Geothermal -- 12.6.2 Heat Recovery -- 12.6.3 Biomass -- 12.6.4 Diathermic Oil -- 12.6.5 Solar Thermal -- 12.7 Combined Heat and Power -- 12.7.1 The Importance of CHP in Reducing Energy Consumption -- 12.8 Economic Modeling -- 12.8.1 Single Phase -- 12.8.2 Two-Phase -- 12.8.3 Supercritical -- 12.9 Summary -- References -- Chapter 13 Power-To-Fuel: A New Energy Storage Technique -- 13.1 Introduction -- 13.2 Key Sub-Process of P-T-F Pathways -- 13.2.1 Renewable Power Production -- 13.2.2 Water Electrolyzer (For Hydrogen Production) -- 13.2.2.1 CO2 Capture (For Hydrocarbon-Based Fuels) and N2 Production (For Ammonia Fuels) Techniques -- 13.3 The Operating Window of Various P-T-F Pathways -- 13.3.1 Direct Electrochemical Reduction Pathway -- 13.3.2 Water Electrolyzer Followed By Catalytic Step -- 13.3.3 Syngas Followed By a Catalytic Step (Case: Co-Electrolyzer Step) -- 13.4 Thermodynamic Assessment -- 13.4.1 Case 1: Power-To-Methanol -- 13.4.2 Case 2: Power-To-Ammonia -- 13.5 Conclusion -- References -- Index | |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
700 | 1 | |a Shukla, Anoop Kumar |0 (DE-588)1298468329 |4 edt | |
700 | 1 | |a Singh, Onkar |d 1968- |0 (DE-588)137270593 |4 edt | |
700 | 1 | |a Sharma, Meeta |4 edt | |
700 | 1 | |a Phanden, Rakesh Kumar |0 (DE-588)1192917405 |4 edt | |
700 | 1 | |a Davim, J. Paulo |d 1964- |0 (DE-588)1043445226 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Kumar Shukla, Anoop |t Hybrid Power Cycle Arrangements for Lower Emissions |d Milton : Taylor & Francis Group,c2022 |n Druck-Ausgabe, Hardcover |z 978-1-032-07253-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-10129-3 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033602734 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6913161 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184003281944576 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Shukla, Anoop Kumar Singh, Onkar 1968- Sharma, Meeta Phanden, Rakesh Kumar Davim, J. Paulo 1964- |
author2_role | edt edt edt edt edt |
author2_variant | a k s ak aks o s os m s ms r k p rk rkp j p d jp jpd |
author_GND | (DE-588)1298468329 (DE-588)137270593 (DE-588)1192917405 (DE-588)1043445226 |
author_facet | Shukla, Anoop Kumar Singh, Onkar 1968- Sharma, Meeta Phanden, Rakesh Kumar Davim, J. Paulo 1964- |
building | Verbundindex |
bvnumber | BV048221997 |
classification_rvk | ZP 3200 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Contributors -- Chapter 1 Hybrid Power Cycle: An Introduction -- 1.1 Introduction -- 1.2 Combined Cycle -- 1.3 Hybrid Solar Assisted Combined Cooling, Heating, and Power -- 1.4 Solid Oxide Fuel Cell-Based Hybrid Systems -- 1.4.1 Molten Carbonate Fuel Cell-Based Microturbine Hybrid Power Cycle -- 1.5 Geothermal Energy-Based Hybrid Power Systems -- References -- Chapter 2 Geothermal-Based Power System Integrated With Kalina and Organic Rankine Cycle -- 2.1 Introduction -- 2.1.1 The Worldwide Availability and Potential of Geothermal Energy Sources -- 2.1.2 Techno-Economic-Environmental Comparison -- 2.2 Multi-Criteria Optimization -- 2.2.1 Contributions of this Chapter -- 2.3 Selection and Description of Proposed System Configurations -- 2.3.1 Methodology -- 2.3.2 Thermodynamic Analysis -- 2.3.3 Exergoeconomic Analysis -- 2.3.4 Optimization Procedure -- 2.4 Results and Discussion -- 2.5 Summary -- References -- Chapter 3 Integrated Gasification Combined Cycle With Co-Gasification -- 3.1 Introduction -- 3.2 Thermo-Chemical Evaluation of Coal Gasifier -- 3.3 Results and Discussions -- 3.4 Summary -- Acknowledgment -- Nomenclature and Abbreviations -- References -- Chapter 4 Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Powered By Solar Thermal Energy -- 4.1 Introduction -- 4.1.1 Overview of Thermodynamic Power Conversion Cycles -- 4.1.2 Subcritical Thermodynamic Cycle -- 4.1.3 Transcritical Thermodynamic Cycle -- 4.1.4 Supercritical Thermodynamic Cycle -- 4.2 Heat Sources Suitable With S-CO< -- sub> -- 2< -- /sub> -- Cycle -- 4.2.1 Concentrating Solar Power (CSP) Sources -- 4.2.2 Nuclear Reactors -- 4.2.3 Waste Heat Recovery (WHR) -- 4.2.3.1 Industrial Waste Heat -- 4.2.3.2 Internal Combustion Engine (ICE) -- 4.2.3.3 Fuel Cells 4.2.4 Geothermal Energy -- 4.2.5 Coal -- 4.2.6 Biomass -- 4.2.7 Cryogenic Fuel -- 4.3 Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.4 Merits of Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.5 Thermophysical Properties of Supercritical CO< -- sub> -- 2< -- /sub> -- -- 4.6 Layouts of Different Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Configurations -- 4.7 Review of Literature -- 4.8 Methodology -- 4.8.1 Cycle Description and Input Parameters -- 4.8.1.1 Assumptions -- 4.8.2 Mathematical Model -- 4.8.2.1 Turbine -- 4.8.2.2 Compressor -- 4.8.3 Exergy Model -- 4.8.3.1 Exergy Balance Equations for Components of Cycle -- 4.9 Results and Discussion -- 4.9.1 Effect of Input Parameters On Exergetic Destruction Rate of Individual Component -- 4.9.1.1 Effect of Compressor Inlet Temperature -- 4.9.1.2 Effect of Turbine Inlet Temperature -- 4.9.1.3 Effect of Pressure Ratio -- 4.9.2 Effect of Various Input Parameters On Exergetic Efficiency -- 4.9.2.1 Effect of TIT -- 4.9.2.2 Effect of Compressor Inlet Temperature at Different Turbine Inlet Temperature -- 4.9.2.3 Effect of Pressure Ratio at Various Compressor Inlet Temperature -- 4.9.2.4 Effect of Pressure Ratio at Different Turbine Inlet Temperature -- 4.9.3 Effect of Various Input Parameters On Performance of Turbomachinery -- 4.9.3.1 Effect of Turbine Inlet Pressure Or Maximum Cycle Pressure -- 4.9.3.2 Effect of Intermediate Pressure -- 4.9.3.4 Effect of Pressure Ratio -- 4.10 Summary -- References -- Chapter 5 Integrated Fuel Cell Hybrid Technology -- 5.1 Introduction -- 5.2 Research Methodology -- 5.3 Description of Fuel Cell -- 5.4 Integrated Technologies -- 5.4.1 Gasification-SOFC -- 5.4.2 SOFC-GT -- 5.4.3 Pressurized SOFC-GT -- 5.4.4 Non-Pressurized SOFC-GT -- 5.4.5 SOFC-CHP -- 5.4.6 SOFC-Trigeneration 5.4.7 SOFC-GT-Absorption Chillers -- 5.4.8 SOFC-PV -- 5.4.9 Future Scope and Challenges -- 5.5 Conclusions and Future Challenging Prospects -- Abbreviations -- References -- Chapter 6 CHP Coupled With a SOFC Plant -- 6.1 Introduction -- 6.2 Thermodynamic Modeling -- 6.3 Methods and Materials -- 6.4 Results and Discussion -- 6.5 Summary -- Abbreviations -- References -- Chapter 7 Fuel Cell Hybrid Power System -- 7.1 Introduction -- 7.2 Fuel Cell -- 7.3 Solar Panel -- 7.3.1 Battery -- 7.4 Integration of Fuel Cell and Battery -- 7.5 Integration of Fuel Cell and PV Cells -- 7.5.1 Integration of Fuel Cell, PV Cell, and Battery -- 7.6 Integration of Fuel Cell, PV Cell, and Wind -- 7.7 Integration of Fuel Cell and Gas Turbine -- 7.8 Integration of Fuel Cell and CHP -- 7.9 Conclusion and Future Scope -- Abbreviations -- References -- Chapter 8 Solid Oxide Fuel Cell Integrated Blade Cooled Gas Turbine Hybrid Power Cycle -- 8.1 Introduction -- 8.2 System Description -- 8.3 Modeling and Simulation -- 8.3.1 Compressor -- 8.3.2 Intercooler -- 8.3.3 Recuperator -- 8.3.4 Fuel Cell (SOFC) -- 8.3.5 Blade Cooled Gas Turbine -- 8.3.6 Combustion Chamber -- 8.4 Result and Discussion -- 8.4.1 Validation -- 8.4.2 Influence of TIT On Blade Coolant Requirement -- 8.4.3 Sensitivity Analysis -- 8.4.4 Effect of Fuel Utilization Ratio and Recirculation Ratio -- 8.4.5 Effect of Fuel Utilization Ratio and Recirculation Ratio On Fuel Cell Performance -- 8.4.6 Influence of Compression Ratio (Rp,c) -- 8.4.7 Influence of Turbine Inlet Temperature (TIT) On Plant Specific Work -- 8.4.8 Influence of Turbine Inlet Temperature (TIT) On Hybrid Efficiency -- 8.4.9 Comparative Analysis of Power-Generating Units -- 8.4.10 Specific Fuel Consumption Within SOFC-ICGT Hybrid Cycle -- 8.4.11 Performance Map -- 8.5 Summary -- Nomenclature -- References Chapter 9 Municipal Solid Waste-Fueled Plants -- 9.1 Introduction -- 9.2 System Description and Assumptions -- 9.3 Modeling -- 9.3.1 Thermodynamic Evaluation -- 9.3.1.1 Waste Gasifier -- 9.3.1.2 Combustion Chamber -- 9.3.1.3 Thermoelectric Generator -- 9.3.1.4 Exergoeconomic Evaluation -- 9.3.1.5 Performance Criteria -- 9.3.1.6 Multi-Criteria Genetic Optimization -- 9.4 Results and Discussion -- 9.5 Conclusion -- Nomenclature and Abbreviations -- References -- Chapter 10 4E-Analysis of Sustainable Hybrid Tri-Generation System -- 10.1 Introduction -- 10.2 Description of the Proposed System -- 10.3 Methodology: Thermodynamic Modeling -- 10.3.1 WI Power Plant -- 10.3.2 Absorption Chiller -- 10.3.3 Solar Evacuated Thermal Collector -- 10.3.4 Economic Analysis -- 10.3.5 Environmental Analysis -- 10.3.6 Exergy Analysis -- 10.4 Multi-Objective Optimization -- 10.5 Case Study and the Challenges -- 10.6 Methodology -- 10.7 Results and Discussion -- 10.8 Summary -- References -- Chapter 11 Trigeneration System: Exergoeconomic and Environmental Analysis -- 11.1 Introduction -- 11.2 System Description -- 11.3 Modeling -- 11.3.1 Assumptions -- 11.4 Energy Analysis -- 11.4.1 Modeling of IRGT Cycle -- 11.4.2 Modeling of HRSG -- 11.4.3 Modeling of ORC -- 11.4.4 Modeling of ARS -- 11.5 Exergy Analysis -- 11.6 Exergoeconomic Analysis -- 11.7 Environmental Analysis -- 11.8 Overall Performance Criteria -- 11.8.1 Total Energy Efficiency (ɳtot) -- 11.8.2 Total Exergy Efficiency (εtot) -- 11.8.3 Total Cost Rate (Ċ< -- sub> -- tot< -- /sub> -- ) -- 11.8.4 Specific CO< -- sub> -- 2< -- /sub> -- Emission (S< -- sub> -- CO< -- sub> -- 2< -- /sub> -- < -- /sub> -- ) -- 11.9 Results and Discussion -- 11.9.1 Model Validation -- 11.9.2 Energy Results -- 11.9.3 Exergy Results -- 11.9.4 Exergoeconomic Results -- 11.9.5 Environmental Results 11.10 Parametric Results -- 11.10.1 Effect of Overall Compressor Ratio -- 11.10.2 Effect of AC Isentropic Efficiency -- 11.10.3 Effect of GT Isentropic Efficiency -- 11.11 Summary -- References -- Chapter 12 Organic Rankine Cycle Integrated Hybrid Arrangement for Power Generation -- 12.1 Introduction -- 12.2 Plant Layout -- 12.3 Single Pressure Level ORC -- 12.3.1 Subcritical ORC -- 12.3.2 Supercritical/transcritical ORC -- 12.4 Multi-Pressure Level -- 12.4.1 Subcritical ORC Multi-Pressure Level -- 12.4.2 Supercritical ORC Multi-Pressure Level -- 12.5 ORC Components -- 12.5.1 Turbine -- 12.5.2 Condenser -- 12.5.3 Pump -- 12.5.4 Boiler and Evaporators -- 12.6 ORC Applications -- 12.6.1 Geothermal -- 12.6.2 Heat Recovery -- 12.6.3 Biomass -- 12.6.4 Diathermic Oil -- 12.6.5 Solar Thermal -- 12.7 Combined Heat and Power -- 12.7.1 The Importance of CHP in Reducing Energy Consumption -- 12.8 Economic Modeling -- 12.8.1 Single Phase -- 12.8.2 Two-Phase -- 12.8.3 Supercritical -- 12.9 Summary -- References -- Chapter 13 Power-To-Fuel: A New Energy Storage Technique -- 13.1 Introduction -- 13.2 Key Sub-Process of P-T-F Pathways -- 13.2.1 Renewable Power Production -- 13.2.2 Water Electrolyzer (For Hydrogen Production) -- 13.2.2.1 CO2 Capture (For Hydrocarbon-Based Fuels) and N2 Production (For Ammonia Fuels) Techniques -- 13.3 The Operating Window of Various P-T-F Pathways -- 13.3.1 Direct Electrochemical Reduction Pathway -- 13.3.2 Water Electrolyzer Followed By Catalytic Step -- 13.3.3 Syngas Followed By a Catalytic Step (Case: Co-Electrolyzer Step) -- 13.4 Thermodynamic Assessment -- 13.4.1 Case 1: Power-To-Methanol -- 13.4.2 Case 2: Power-To-Ammonia -- 13.5 Conclusion -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6913161 (ZDB-30-PAD)EBC6913161 (ZDB-89-EBL)EBL6913161 (OCoLC)1319630584 (DE-599)BVBBV048221997 |
discipline | Energietechnik |
discipline_str_mv | Energietechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11162nmm a2200505zc 4500</leader><controlfield tag="001">BV048221997</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230807 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000566659</subfield><subfield code="9">978-1-00-056665-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003213741</subfield><subfield code="9">978-1-003-21374-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6913161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6913161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6913161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1319630584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221997</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3200</subfield><subfield code="0">(DE-625)157941:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid power cycle arrangements for lower emissions</subfield><subfield code="c">edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 298 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme, Pläne</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Science, technology, and management series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Contributors -- Chapter 1 Hybrid Power Cycle: An Introduction -- 1.1 Introduction -- 1.2 Combined Cycle -- 1.3 Hybrid Solar Assisted Combined Cooling, Heating, and Power -- 1.4 Solid Oxide Fuel Cell-Based Hybrid Systems -- 1.4.1 Molten Carbonate Fuel Cell-Based Microturbine Hybrid Power Cycle -- 1.5 Geothermal Energy-Based Hybrid Power Systems -- References -- Chapter 2 Geothermal-Based Power System Integrated With Kalina and Organic Rankine Cycle -- 2.1 Introduction -- 2.1.1 The Worldwide Availability and Potential of Geothermal Energy Sources -- 2.1.2 Techno-Economic-Environmental Comparison -- 2.2 Multi-Criteria Optimization -- 2.2.1 Contributions of this Chapter -- 2.3 Selection and Description of Proposed System Configurations -- 2.3.1 Methodology -- 2.3.2 Thermodynamic Analysis -- 2.3.3 Exergoeconomic Analysis -- 2.3.4 Optimization Procedure -- 2.4 Results and Discussion -- 2.5 Summary -- References -- Chapter 3 Integrated Gasification Combined Cycle With Co-Gasification -- 3.1 Introduction -- 3.2 Thermo-Chemical Evaluation of Coal Gasifier -- 3.3 Results and Discussions -- 3.4 Summary -- Acknowledgment -- Nomenclature and Abbreviations -- References -- Chapter 4 Supercritical CO&lt -- sub&gt -- 2&lt -- /sub&gt -- Cycle Powered By Solar Thermal Energy -- 4.1 Introduction -- 4.1.1 Overview of Thermodynamic Power Conversion Cycles -- 4.1.2 Subcritical Thermodynamic Cycle -- 4.1.3 Transcritical Thermodynamic Cycle -- 4.1.4 Supercritical Thermodynamic Cycle -- 4.2 Heat Sources Suitable With S-CO&lt -- sub&gt -- 2&lt -- /sub&gt -- Cycle -- 4.2.1 Concentrating Solar Power (CSP) Sources -- 4.2.2 Nuclear Reactors -- 4.2.3 Waste Heat Recovery (WHR) -- 4.2.3.1 Industrial Waste Heat -- 4.2.3.2 Internal Combustion Engine (ICE) -- 4.2.3.3 Fuel Cells</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.4 Geothermal Energy -- 4.2.5 Coal -- 4.2.6 Biomass -- 4.2.7 Cryogenic Fuel -- 4.3 Supercritical CO&lt -- sub&gt -- 2&lt -- /sub&gt -- as Working Fluid -- 4.4 Merits of Supercritical CO&lt -- sub&gt -- 2&lt -- /sub&gt -- as Working Fluid -- 4.5 Thermophysical Properties of Supercritical CO&lt -- sub&gt -- 2&lt -- /sub&gt -- -- 4.6 Layouts of Different Supercritical CO&lt -- sub&gt -- 2&lt -- /sub&gt -- Cycle Configurations -- 4.7 Review of Literature -- 4.8 Methodology -- 4.8.1 Cycle Description and Input Parameters -- 4.8.1.1 Assumptions -- 4.8.2 Mathematical Model -- 4.8.2.1 Turbine -- 4.8.2.2 Compressor -- 4.8.3 Exergy Model -- 4.8.3.1 Exergy Balance Equations for Components of Cycle -- 4.9 Results and Discussion -- 4.9.1 Effect of Input Parameters On Exergetic Destruction Rate of Individual Component -- 4.9.1.1 Effect of Compressor Inlet Temperature -- 4.9.1.2 Effect of Turbine Inlet Temperature -- 4.9.1.3 Effect of Pressure Ratio -- 4.9.2 Effect of Various Input Parameters On Exergetic Efficiency -- 4.9.2.1 Effect of TIT -- 4.9.2.2 Effect of Compressor Inlet Temperature at Different Turbine Inlet Temperature -- 4.9.2.3 Effect of Pressure Ratio at Various Compressor Inlet Temperature -- 4.9.2.4 Effect of Pressure Ratio at Different Turbine Inlet Temperature -- 4.9.3 Effect of Various Input Parameters On Performance of Turbomachinery -- 4.9.3.1 Effect of Turbine Inlet Pressure Or Maximum Cycle Pressure -- 4.9.3.2 Effect of Intermediate Pressure -- 4.9.3.4 Effect of Pressure Ratio -- 4.10 Summary -- References -- Chapter 5 Integrated Fuel Cell Hybrid Technology -- 5.1 Introduction -- 5.2 Research Methodology -- 5.3 Description of Fuel Cell -- 5.4 Integrated Technologies -- 5.4.1 Gasification-SOFC -- 5.4.2 SOFC-GT -- 5.4.3 Pressurized SOFC-GT -- 5.4.4 Non-Pressurized SOFC-GT -- 5.4.5 SOFC-CHP -- 5.4.6 SOFC-Trigeneration</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.7 SOFC-GT-Absorption Chillers -- 5.4.8 SOFC-PV -- 5.4.9 Future Scope and Challenges -- 5.5 Conclusions and Future Challenging Prospects -- Abbreviations -- References -- Chapter 6 CHP Coupled With a SOFC Plant -- 6.1 Introduction -- 6.2 Thermodynamic Modeling -- 6.3 Methods and Materials -- 6.4 Results and Discussion -- 6.5 Summary -- Abbreviations -- References -- Chapter 7 Fuel Cell Hybrid Power System -- 7.1 Introduction -- 7.2 Fuel Cell -- 7.3 Solar Panel -- 7.3.1 Battery -- 7.4 Integration of Fuel Cell and Battery -- 7.5 Integration of Fuel Cell and PV Cells -- 7.5.1 Integration of Fuel Cell, PV Cell, and Battery -- 7.6 Integration of Fuel Cell, PV Cell, and Wind -- 7.7 Integration of Fuel Cell and Gas Turbine -- 7.8 Integration of Fuel Cell and CHP -- 7.9 Conclusion and Future Scope -- Abbreviations -- References -- Chapter 8 Solid Oxide Fuel Cell Integrated Blade Cooled Gas Turbine Hybrid Power Cycle -- 8.1 Introduction -- 8.2 System Description -- 8.3 Modeling and Simulation -- 8.3.1 Compressor -- 8.3.2 Intercooler -- 8.3.3 Recuperator -- 8.3.4 Fuel Cell (SOFC) -- 8.3.5 Blade Cooled Gas Turbine -- 8.3.6 Combustion Chamber -- 8.4 Result and Discussion -- 8.4.1 Validation -- 8.4.2 Influence of TIT On Blade Coolant Requirement -- 8.4.3 Sensitivity Analysis -- 8.4.4 Effect of Fuel Utilization Ratio and Recirculation Ratio -- 8.4.5 Effect of Fuel Utilization Ratio and Recirculation Ratio On Fuel Cell Performance -- 8.4.6 Influence of Compression Ratio (Rp,c) -- 8.4.7 Influence of Turbine Inlet Temperature (TIT) On Plant Specific Work -- 8.4.8 Influence of Turbine Inlet Temperature (TIT) On Hybrid Efficiency -- 8.4.9 Comparative Analysis of Power-Generating Units -- 8.4.10 Specific Fuel Consumption Within SOFC-ICGT Hybrid Cycle -- 8.4.11 Performance Map -- 8.5 Summary -- Nomenclature -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 9 Municipal Solid Waste-Fueled Plants -- 9.1 Introduction -- 9.2 System Description and Assumptions -- 9.3 Modeling -- 9.3.1 Thermodynamic Evaluation -- 9.3.1.1 Waste Gasifier -- 9.3.1.2 Combustion Chamber -- 9.3.1.3 Thermoelectric Generator -- 9.3.1.4 Exergoeconomic Evaluation -- 9.3.1.5 Performance Criteria -- 9.3.1.6 Multi-Criteria Genetic Optimization -- 9.4 Results and Discussion -- 9.5 Conclusion -- Nomenclature and Abbreviations -- References -- Chapter 10 4E-Analysis of Sustainable Hybrid Tri-Generation System -- 10.1 Introduction -- 10.2 Description of the Proposed System -- 10.3 Methodology: Thermodynamic Modeling -- 10.3.1 WI Power Plant -- 10.3.2 Absorption Chiller -- 10.3.3 Solar Evacuated Thermal Collector -- 10.3.4 Economic Analysis -- 10.3.5 Environmental Analysis -- 10.3.6 Exergy Analysis -- 10.4 Multi-Objective Optimization -- 10.5 Case Study and the Challenges -- 10.6 Methodology -- 10.7 Results and Discussion -- 10.8 Summary -- References -- Chapter 11 Trigeneration System: Exergoeconomic and Environmental Analysis -- 11.1 Introduction -- 11.2 System Description -- 11.3 Modeling -- 11.3.1 Assumptions -- 11.4 Energy Analysis -- 11.4.1 Modeling of IRGT Cycle -- 11.4.2 Modeling of HRSG -- 11.4.3 Modeling of ORC -- 11.4.4 Modeling of ARS -- 11.5 Exergy Analysis -- 11.6 Exergoeconomic Analysis -- 11.7 Environmental Analysis -- 11.8 Overall Performance Criteria -- 11.8.1 Total Energy Efficiency (ɳtot) -- 11.8.2 Total Exergy Efficiency (εtot) -- 11.8.3 Total Cost Rate (Ċ&lt -- sub&gt -- tot&lt -- /sub&gt -- ) -- 11.8.4 Specific CO&lt -- sub&gt -- 2&lt -- /sub&gt -- Emission (S&lt -- sub&gt -- CO&lt -- sub&gt -- 2&lt -- /sub&gt -- &lt -- /sub&gt -- ) -- 11.9 Results and Discussion -- 11.9.1 Model Validation -- 11.9.2 Energy Results -- 11.9.3 Exergy Results -- 11.9.4 Exergoeconomic Results -- 11.9.5 Environmental Results</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.10 Parametric Results -- 11.10.1 Effect of Overall Compressor Ratio -- 11.10.2 Effect of AC Isentropic Efficiency -- 11.10.3 Effect of GT Isentropic Efficiency -- 11.11 Summary -- References -- Chapter 12 Organic Rankine Cycle Integrated Hybrid Arrangement for Power Generation -- 12.1 Introduction -- 12.2 Plant Layout -- 12.3 Single Pressure Level ORC -- 12.3.1 Subcritical ORC -- 12.3.2 Supercritical/transcritical ORC -- 12.4 Multi-Pressure Level -- 12.4.1 Subcritical ORC Multi-Pressure Level -- 12.4.2 Supercritical ORC Multi-Pressure Level -- 12.5 ORC Components -- 12.5.1 Turbine -- 12.5.2 Condenser -- 12.5.3 Pump -- 12.5.4 Boiler and Evaporators -- 12.6 ORC Applications -- 12.6.1 Geothermal -- 12.6.2 Heat Recovery -- 12.6.3 Biomass -- 12.6.4 Diathermic Oil -- 12.6.5 Solar Thermal -- 12.7 Combined Heat and Power -- 12.7.1 The Importance of CHP in Reducing Energy Consumption -- 12.8 Economic Modeling -- 12.8.1 Single Phase -- 12.8.2 Two-Phase -- 12.8.3 Supercritical -- 12.9 Summary -- References -- Chapter 13 Power-To-Fuel: A New Energy Storage Technique -- 13.1 Introduction -- 13.2 Key Sub-Process of P-T-F Pathways -- 13.2.1 Renewable Power Production -- 13.2.2 Water Electrolyzer (For Hydrogen Production) -- 13.2.2.1 CO2 Capture (For Hydrocarbon-Based Fuels) and N2 Production (For Ammonia Fuels) Techniques -- 13.3 The Operating Window of Various P-T-F Pathways -- 13.3.1 Direct Electrochemical Reduction Pathway -- 13.3.2 Water Electrolyzer Followed By Catalytic Step -- 13.3.3 Syngas Followed By a Catalytic Step (Case: Co-Electrolyzer Step) -- 13.4 Thermodynamic Assessment -- 13.4.1 Case 1: Power-To-Methanol -- 13.4.2 Case 2: Power-To-Ammonia -- 13.5 Conclusion -- References -- Index</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shukla, Anoop Kumar</subfield><subfield code="0">(DE-588)1298468329</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Onkar</subfield><subfield code="d">1968-</subfield><subfield code="0">(DE-588)137270593</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Meeta</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phanden, Rakesh Kumar</subfield><subfield code="0">(DE-588)1192917405</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davim, J. Paulo</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)1043445226</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Kumar Shukla, Anoop</subfield><subfield code="t">Hybrid Power Cycle Arrangements for Lower Emissions</subfield><subfield code="d">Milton : Taylor & Francis Group,c2022</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-032-07253-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-10129-3</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602734</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6913161</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048221997 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:33Z |
indexdate | 2024-07-10T09:32:25Z |
institution | BVB |
isbn | 9781000566659 9781003213741 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602734 |
oclc_num | 1319630584 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (viii, 298 Seiten) Illustrationen, Diagramme, Pläne |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
series2 | Science, technology, and management series |
spelling | Hybrid power cycle arrangements for lower emissions edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (viii, 298 Seiten) Illustrationen, Diagramme, Pläne txt rdacontent c rdamedia cr rdacarrier Science, technology, and management series Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Contributors -- Chapter 1 Hybrid Power Cycle: An Introduction -- 1.1 Introduction -- 1.2 Combined Cycle -- 1.3 Hybrid Solar Assisted Combined Cooling, Heating, and Power -- 1.4 Solid Oxide Fuel Cell-Based Hybrid Systems -- 1.4.1 Molten Carbonate Fuel Cell-Based Microturbine Hybrid Power Cycle -- 1.5 Geothermal Energy-Based Hybrid Power Systems -- References -- Chapter 2 Geothermal-Based Power System Integrated With Kalina and Organic Rankine Cycle -- 2.1 Introduction -- 2.1.1 The Worldwide Availability and Potential of Geothermal Energy Sources -- 2.1.2 Techno-Economic-Environmental Comparison -- 2.2 Multi-Criteria Optimization -- 2.2.1 Contributions of this Chapter -- 2.3 Selection and Description of Proposed System Configurations -- 2.3.1 Methodology -- 2.3.2 Thermodynamic Analysis -- 2.3.3 Exergoeconomic Analysis -- 2.3.4 Optimization Procedure -- 2.4 Results and Discussion -- 2.5 Summary -- References -- Chapter 3 Integrated Gasification Combined Cycle With Co-Gasification -- 3.1 Introduction -- 3.2 Thermo-Chemical Evaluation of Coal Gasifier -- 3.3 Results and Discussions -- 3.4 Summary -- Acknowledgment -- Nomenclature and Abbreviations -- References -- Chapter 4 Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Powered By Solar Thermal Energy -- 4.1 Introduction -- 4.1.1 Overview of Thermodynamic Power Conversion Cycles -- 4.1.2 Subcritical Thermodynamic Cycle -- 4.1.3 Transcritical Thermodynamic Cycle -- 4.1.4 Supercritical Thermodynamic Cycle -- 4.2 Heat Sources Suitable With S-CO< -- sub> -- 2< -- /sub> -- Cycle -- 4.2.1 Concentrating Solar Power (CSP) Sources -- 4.2.2 Nuclear Reactors -- 4.2.3 Waste Heat Recovery (WHR) -- 4.2.3.1 Industrial Waste Heat -- 4.2.3.2 Internal Combustion Engine (ICE) -- 4.2.3.3 Fuel Cells 4.2.4 Geothermal Energy -- 4.2.5 Coal -- 4.2.6 Biomass -- 4.2.7 Cryogenic Fuel -- 4.3 Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.4 Merits of Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.5 Thermophysical Properties of Supercritical CO< -- sub> -- 2< -- /sub> -- -- 4.6 Layouts of Different Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Configurations -- 4.7 Review of Literature -- 4.8 Methodology -- 4.8.1 Cycle Description and Input Parameters -- 4.8.1.1 Assumptions -- 4.8.2 Mathematical Model -- 4.8.2.1 Turbine -- 4.8.2.2 Compressor -- 4.8.3 Exergy Model -- 4.8.3.1 Exergy Balance Equations for Components of Cycle -- 4.9 Results and Discussion -- 4.9.1 Effect of Input Parameters On Exergetic Destruction Rate of Individual Component -- 4.9.1.1 Effect of Compressor Inlet Temperature -- 4.9.1.2 Effect of Turbine Inlet Temperature -- 4.9.1.3 Effect of Pressure Ratio -- 4.9.2 Effect of Various Input Parameters On Exergetic Efficiency -- 4.9.2.1 Effect of TIT -- 4.9.2.2 Effect of Compressor Inlet Temperature at Different Turbine Inlet Temperature -- 4.9.2.3 Effect of Pressure Ratio at Various Compressor Inlet Temperature -- 4.9.2.4 Effect of Pressure Ratio at Different Turbine Inlet Temperature -- 4.9.3 Effect of Various Input Parameters On Performance of Turbomachinery -- 4.9.3.1 Effect of Turbine Inlet Pressure Or Maximum Cycle Pressure -- 4.9.3.2 Effect of Intermediate Pressure -- 4.9.3.4 Effect of Pressure Ratio -- 4.10 Summary -- References -- Chapter 5 Integrated Fuel Cell Hybrid Technology -- 5.1 Introduction -- 5.2 Research Methodology -- 5.3 Description of Fuel Cell -- 5.4 Integrated Technologies -- 5.4.1 Gasification-SOFC -- 5.4.2 SOFC-GT -- 5.4.3 Pressurized SOFC-GT -- 5.4.4 Non-Pressurized SOFC-GT -- 5.4.5 SOFC-CHP -- 5.4.6 SOFC-Trigeneration 5.4.7 SOFC-GT-Absorption Chillers -- 5.4.8 SOFC-PV -- 5.4.9 Future Scope and Challenges -- 5.5 Conclusions and Future Challenging Prospects -- Abbreviations -- References -- Chapter 6 CHP Coupled With a SOFC Plant -- 6.1 Introduction -- 6.2 Thermodynamic Modeling -- 6.3 Methods and Materials -- 6.4 Results and Discussion -- 6.5 Summary -- Abbreviations -- References -- Chapter 7 Fuel Cell Hybrid Power System -- 7.1 Introduction -- 7.2 Fuel Cell -- 7.3 Solar Panel -- 7.3.1 Battery -- 7.4 Integration of Fuel Cell and Battery -- 7.5 Integration of Fuel Cell and PV Cells -- 7.5.1 Integration of Fuel Cell, PV Cell, and Battery -- 7.6 Integration of Fuel Cell, PV Cell, and Wind -- 7.7 Integration of Fuel Cell and Gas Turbine -- 7.8 Integration of Fuel Cell and CHP -- 7.9 Conclusion and Future Scope -- Abbreviations -- References -- Chapter 8 Solid Oxide Fuel Cell Integrated Blade Cooled Gas Turbine Hybrid Power Cycle -- 8.1 Introduction -- 8.2 System Description -- 8.3 Modeling and Simulation -- 8.3.1 Compressor -- 8.3.2 Intercooler -- 8.3.3 Recuperator -- 8.3.4 Fuel Cell (SOFC) -- 8.3.5 Blade Cooled Gas Turbine -- 8.3.6 Combustion Chamber -- 8.4 Result and Discussion -- 8.4.1 Validation -- 8.4.2 Influence of TIT On Blade Coolant Requirement -- 8.4.3 Sensitivity Analysis -- 8.4.4 Effect of Fuel Utilization Ratio and Recirculation Ratio -- 8.4.5 Effect of Fuel Utilization Ratio and Recirculation Ratio On Fuel Cell Performance -- 8.4.6 Influence of Compression Ratio (Rp,c) -- 8.4.7 Influence of Turbine Inlet Temperature (TIT) On Plant Specific Work -- 8.4.8 Influence of Turbine Inlet Temperature (TIT) On Hybrid Efficiency -- 8.4.9 Comparative Analysis of Power-Generating Units -- 8.4.10 Specific Fuel Consumption Within SOFC-ICGT Hybrid Cycle -- 8.4.11 Performance Map -- 8.5 Summary -- Nomenclature -- References Chapter 9 Municipal Solid Waste-Fueled Plants -- 9.1 Introduction -- 9.2 System Description and Assumptions -- 9.3 Modeling -- 9.3.1 Thermodynamic Evaluation -- 9.3.1.1 Waste Gasifier -- 9.3.1.2 Combustion Chamber -- 9.3.1.3 Thermoelectric Generator -- 9.3.1.4 Exergoeconomic Evaluation -- 9.3.1.5 Performance Criteria -- 9.3.1.6 Multi-Criteria Genetic Optimization -- 9.4 Results and Discussion -- 9.5 Conclusion -- Nomenclature and Abbreviations -- References -- Chapter 10 4E-Analysis of Sustainable Hybrid Tri-Generation System -- 10.1 Introduction -- 10.2 Description of the Proposed System -- 10.3 Methodology: Thermodynamic Modeling -- 10.3.1 WI Power Plant -- 10.3.2 Absorption Chiller -- 10.3.3 Solar Evacuated Thermal Collector -- 10.3.4 Economic Analysis -- 10.3.5 Environmental Analysis -- 10.3.6 Exergy Analysis -- 10.4 Multi-Objective Optimization -- 10.5 Case Study and the Challenges -- 10.6 Methodology -- 10.7 Results and Discussion -- 10.8 Summary -- References -- Chapter 11 Trigeneration System: Exergoeconomic and Environmental Analysis -- 11.1 Introduction -- 11.2 System Description -- 11.3 Modeling -- 11.3.1 Assumptions -- 11.4 Energy Analysis -- 11.4.1 Modeling of IRGT Cycle -- 11.4.2 Modeling of HRSG -- 11.4.3 Modeling of ORC -- 11.4.4 Modeling of ARS -- 11.5 Exergy Analysis -- 11.6 Exergoeconomic Analysis -- 11.7 Environmental Analysis -- 11.8 Overall Performance Criteria -- 11.8.1 Total Energy Efficiency (ɳtot) -- 11.8.2 Total Exergy Efficiency (εtot) -- 11.8.3 Total Cost Rate (Ċ< -- sub> -- tot< -- /sub> -- ) -- 11.8.4 Specific CO< -- sub> -- 2< -- /sub> -- Emission (S< -- sub> -- CO< -- sub> -- 2< -- /sub> -- < -- /sub> -- ) -- 11.9 Results and Discussion -- 11.9.1 Model Validation -- 11.9.2 Energy Results -- 11.9.3 Exergy Results -- 11.9.4 Exergoeconomic Results -- 11.9.5 Environmental Results 11.10 Parametric Results -- 11.10.1 Effect of Overall Compressor Ratio -- 11.10.2 Effect of AC Isentropic Efficiency -- 11.10.3 Effect of GT Isentropic Efficiency -- 11.11 Summary -- References -- Chapter 12 Organic Rankine Cycle Integrated Hybrid Arrangement for Power Generation -- 12.1 Introduction -- 12.2 Plant Layout -- 12.3 Single Pressure Level ORC -- 12.3.1 Subcritical ORC -- 12.3.2 Supercritical/transcritical ORC -- 12.4 Multi-Pressure Level -- 12.4.1 Subcritical ORC Multi-Pressure Level -- 12.4.2 Supercritical ORC Multi-Pressure Level -- 12.5 ORC Components -- 12.5.1 Turbine -- 12.5.2 Condenser -- 12.5.3 Pump -- 12.5.4 Boiler and Evaporators -- 12.6 ORC Applications -- 12.6.1 Geothermal -- 12.6.2 Heat Recovery -- 12.6.3 Biomass -- 12.6.4 Diathermic Oil -- 12.6.5 Solar Thermal -- 12.7 Combined Heat and Power -- 12.7.1 The Importance of CHP in Reducing Energy Consumption -- 12.8 Economic Modeling -- 12.8.1 Single Phase -- 12.8.2 Two-Phase -- 12.8.3 Supercritical -- 12.9 Summary -- References -- Chapter 13 Power-To-Fuel: A New Energy Storage Technique -- 13.1 Introduction -- 13.2 Key Sub-Process of P-T-F Pathways -- 13.2.1 Renewable Power Production -- 13.2.2 Water Electrolyzer (For Hydrogen Production) -- 13.2.2.1 CO2 Capture (For Hydrocarbon-Based Fuels) and N2 Production (For Ammonia Fuels) Techniques -- 13.3 The Operating Window of Various P-T-F Pathways -- 13.3.1 Direct Electrochemical Reduction Pathway -- 13.3.2 Water Electrolyzer Followed By Catalytic Step -- 13.3.3 Syngas Followed By a Catalytic Step (Case: Co-Electrolyzer Step) -- 13.4 Thermodynamic Assessment -- 13.4.1 Case 1: Power-To-Methanol -- 13.4.2 Case 2: Power-To-Ammonia -- 13.5 Conclusion -- References -- Index (DE-588)4143413-4 Aufsatzsammlung gnd-content Shukla, Anoop Kumar (DE-588)1298468329 edt Singh, Onkar 1968- (DE-588)137270593 edt Sharma, Meeta edt Phanden, Rakesh Kumar (DE-588)1192917405 edt Davim, J. Paulo 1964- (DE-588)1043445226 edt Erscheint auch als Kumar Shukla, Anoop Hybrid Power Cycle Arrangements for Lower Emissions Milton : Taylor & Francis Group,c2022 Druck-Ausgabe, Hardcover 978-1-032-07253-1 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-10129-3 |
spellingShingle | Hybrid power cycle arrangements for lower emissions Cover -- Half Title -- Series Information -- Title Page -- Copyright Page -- Table of Contents -- Contributors -- Chapter 1 Hybrid Power Cycle: An Introduction -- 1.1 Introduction -- 1.2 Combined Cycle -- 1.3 Hybrid Solar Assisted Combined Cooling, Heating, and Power -- 1.4 Solid Oxide Fuel Cell-Based Hybrid Systems -- 1.4.1 Molten Carbonate Fuel Cell-Based Microturbine Hybrid Power Cycle -- 1.5 Geothermal Energy-Based Hybrid Power Systems -- References -- Chapter 2 Geothermal-Based Power System Integrated With Kalina and Organic Rankine Cycle -- 2.1 Introduction -- 2.1.1 The Worldwide Availability and Potential of Geothermal Energy Sources -- 2.1.2 Techno-Economic-Environmental Comparison -- 2.2 Multi-Criteria Optimization -- 2.2.1 Contributions of this Chapter -- 2.3 Selection and Description of Proposed System Configurations -- 2.3.1 Methodology -- 2.3.2 Thermodynamic Analysis -- 2.3.3 Exergoeconomic Analysis -- 2.3.4 Optimization Procedure -- 2.4 Results and Discussion -- 2.5 Summary -- References -- Chapter 3 Integrated Gasification Combined Cycle With Co-Gasification -- 3.1 Introduction -- 3.2 Thermo-Chemical Evaluation of Coal Gasifier -- 3.3 Results and Discussions -- 3.4 Summary -- Acknowledgment -- Nomenclature and Abbreviations -- References -- Chapter 4 Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Powered By Solar Thermal Energy -- 4.1 Introduction -- 4.1.1 Overview of Thermodynamic Power Conversion Cycles -- 4.1.2 Subcritical Thermodynamic Cycle -- 4.1.3 Transcritical Thermodynamic Cycle -- 4.1.4 Supercritical Thermodynamic Cycle -- 4.2 Heat Sources Suitable With S-CO< -- sub> -- 2< -- /sub> -- Cycle -- 4.2.1 Concentrating Solar Power (CSP) Sources -- 4.2.2 Nuclear Reactors -- 4.2.3 Waste Heat Recovery (WHR) -- 4.2.3.1 Industrial Waste Heat -- 4.2.3.2 Internal Combustion Engine (ICE) -- 4.2.3.3 Fuel Cells 4.2.4 Geothermal Energy -- 4.2.5 Coal -- 4.2.6 Biomass -- 4.2.7 Cryogenic Fuel -- 4.3 Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.4 Merits of Supercritical CO< -- sub> -- 2< -- /sub> -- as Working Fluid -- 4.5 Thermophysical Properties of Supercritical CO< -- sub> -- 2< -- /sub> -- -- 4.6 Layouts of Different Supercritical CO< -- sub> -- 2< -- /sub> -- Cycle Configurations -- 4.7 Review of Literature -- 4.8 Methodology -- 4.8.1 Cycle Description and Input Parameters -- 4.8.1.1 Assumptions -- 4.8.2 Mathematical Model -- 4.8.2.1 Turbine -- 4.8.2.2 Compressor -- 4.8.3 Exergy Model -- 4.8.3.1 Exergy Balance Equations for Components of Cycle -- 4.9 Results and Discussion -- 4.9.1 Effect of Input Parameters On Exergetic Destruction Rate of Individual Component -- 4.9.1.1 Effect of Compressor Inlet Temperature -- 4.9.1.2 Effect of Turbine Inlet Temperature -- 4.9.1.3 Effect of Pressure Ratio -- 4.9.2 Effect of Various Input Parameters On Exergetic Efficiency -- 4.9.2.1 Effect of TIT -- 4.9.2.2 Effect of Compressor Inlet Temperature at Different Turbine Inlet Temperature -- 4.9.2.3 Effect of Pressure Ratio at Various Compressor Inlet Temperature -- 4.9.2.4 Effect of Pressure Ratio at Different Turbine Inlet Temperature -- 4.9.3 Effect of Various Input Parameters On Performance of Turbomachinery -- 4.9.3.1 Effect of Turbine Inlet Pressure Or Maximum Cycle Pressure -- 4.9.3.2 Effect of Intermediate Pressure -- 4.9.3.4 Effect of Pressure Ratio -- 4.10 Summary -- References -- Chapter 5 Integrated Fuel Cell Hybrid Technology -- 5.1 Introduction -- 5.2 Research Methodology -- 5.3 Description of Fuel Cell -- 5.4 Integrated Technologies -- 5.4.1 Gasification-SOFC -- 5.4.2 SOFC-GT -- 5.4.3 Pressurized SOFC-GT -- 5.4.4 Non-Pressurized SOFC-GT -- 5.4.5 SOFC-CHP -- 5.4.6 SOFC-Trigeneration 5.4.7 SOFC-GT-Absorption Chillers -- 5.4.8 SOFC-PV -- 5.4.9 Future Scope and Challenges -- 5.5 Conclusions and Future Challenging Prospects -- Abbreviations -- References -- Chapter 6 CHP Coupled With a SOFC Plant -- 6.1 Introduction -- 6.2 Thermodynamic Modeling -- 6.3 Methods and Materials -- 6.4 Results and Discussion -- 6.5 Summary -- Abbreviations -- References -- Chapter 7 Fuel Cell Hybrid Power System -- 7.1 Introduction -- 7.2 Fuel Cell -- 7.3 Solar Panel -- 7.3.1 Battery -- 7.4 Integration of Fuel Cell and Battery -- 7.5 Integration of Fuel Cell and PV Cells -- 7.5.1 Integration of Fuel Cell, PV Cell, and Battery -- 7.6 Integration of Fuel Cell, PV Cell, and Wind -- 7.7 Integration of Fuel Cell and Gas Turbine -- 7.8 Integration of Fuel Cell and CHP -- 7.9 Conclusion and Future Scope -- Abbreviations -- References -- Chapter 8 Solid Oxide Fuel Cell Integrated Blade Cooled Gas Turbine Hybrid Power Cycle -- 8.1 Introduction -- 8.2 System Description -- 8.3 Modeling and Simulation -- 8.3.1 Compressor -- 8.3.2 Intercooler -- 8.3.3 Recuperator -- 8.3.4 Fuel Cell (SOFC) -- 8.3.5 Blade Cooled Gas Turbine -- 8.3.6 Combustion Chamber -- 8.4 Result and Discussion -- 8.4.1 Validation -- 8.4.2 Influence of TIT On Blade Coolant Requirement -- 8.4.3 Sensitivity Analysis -- 8.4.4 Effect of Fuel Utilization Ratio and Recirculation Ratio -- 8.4.5 Effect of Fuel Utilization Ratio and Recirculation Ratio On Fuel Cell Performance -- 8.4.6 Influence of Compression Ratio (Rp,c) -- 8.4.7 Influence of Turbine Inlet Temperature (TIT) On Plant Specific Work -- 8.4.8 Influence of Turbine Inlet Temperature (TIT) On Hybrid Efficiency -- 8.4.9 Comparative Analysis of Power-Generating Units -- 8.4.10 Specific Fuel Consumption Within SOFC-ICGT Hybrid Cycle -- 8.4.11 Performance Map -- 8.5 Summary -- Nomenclature -- References Chapter 9 Municipal Solid Waste-Fueled Plants -- 9.1 Introduction -- 9.2 System Description and Assumptions -- 9.3 Modeling -- 9.3.1 Thermodynamic Evaluation -- 9.3.1.1 Waste Gasifier -- 9.3.1.2 Combustion Chamber -- 9.3.1.3 Thermoelectric Generator -- 9.3.1.4 Exergoeconomic Evaluation -- 9.3.1.5 Performance Criteria -- 9.3.1.6 Multi-Criteria Genetic Optimization -- 9.4 Results and Discussion -- 9.5 Conclusion -- Nomenclature and Abbreviations -- References -- Chapter 10 4E-Analysis of Sustainable Hybrid Tri-Generation System -- 10.1 Introduction -- 10.2 Description of the Proposed System -- 10.3 Methodology: Thermodynamic Modeling -- 10.3.1 WI Power Plant -- 10.3.2 Absorption Chiller -- 10.3.3 Solar Evacuated Thermal Collector -- 10.3.4 Economic Analysis -- 10.3.5 Environmental Analysis -- 10.3.6 Exergy Analysis -- 10.4 Multi-Objective Optimization -- 10.5 Case Study and the Challenges -- 10.6 Methodology -- 10.7 Results and Discussion -- 10.8 Summary -- References -- Chapter 11 Trigeneration System: Exergoeconomic and Environmental Analysis -- 11.1 Introduction -- 11.2 System Description -- 11.3 Modeling -- 11.3.1 Assumptions -- 11.4 Energy Analysis -- 11.4.1 Modeling of IRGT Cycle -- 11.4.2 Modeling of HRSG -- 11.4.3 Modeling of ORC -- 11.4.4 Modeling of ARS -- 11.5 Exergy Analysis -- 11.6 Exergoeconomic Analysis -- 11.7 Environmental Analysis -- 11.8 Overall Performance Criteria -- 11.8.1 Total Energy Efficiency (ɳtot) -- 11.8.2 Total Exergy Efficiency (εtot) -- 11.8.3 Total Cost Rate (Ċ< -- sub> -- tot< -- /sub> -- ) -- 11.8.4 Specific CO< -- sub> -- 2< -- /sub> -- Emission (S< -- sub> -- CO< -- sub> -- 2< -- /sub> -- < -- /sub> -- ) -- 11.9 Results and Discussion -- 11.9.1 Model Validation -- 11.9.2 Energy Results -- 11.9.3 Exergy Results -- 11.9.4 Exergoeconomic Results -- 11.9.5 Environmental Results 11.10 Parametric Results -- 11.10.1 Effect of Overall Compressor Ratio -- 11.10.2 Effect of AC Isentropic Efficiency -- 11.10.3 Effect of GT Isentropic Efficiency -- 11.11 Summary -- References -- Chapter 12 Organic Rankine Cycle Integrated Hybrid Arrangement for Power Generation -- 12.1 Introduction -- 12.2 Plant Layout -- 12.3 Single Pressure Level ORC -- 12.3.1 Subcritical ORC -- 12.3.2 Supercritical/transcritical ORC -- 12.4 Multi-Pressure Level -- 12.4.1 Subcritical ORC Multi-Pressure Level -- 12.4.2 Supercritical ORC Multi-Pressure Level -- 12.5 ORC Components -- 12.5.1 Turbine -- 12.5.2 Condenser -- 12.5.3 Pump -- 12.5.4 Boiler and Evaporators -- 12.6 ORC Applications -- 12.6.1 Geothermal -- 12.6.2 Heat Recovery -- 12.6.3 Biomass -- 12.6.4 Diathermic Oil -- 12.6.5 Solar Thermal -- 12.7 Combined Heat and Power -- 12.7.1 The Importance of CHP in Reducing Energy Consumption -- 12.8 Economic Modeling -- 12.8.1 Single Phase -- 12.8.2 Two-Phase -- 12.8.3 Supercritical -- 12.9 Summary -- References -- Chapter 13 Power-To-Fuel: A New Energy Storage Technique -- 13.1 Introduction -- 13.2 Key Sub-Process of P-T-F Pathways -- 13.2.1 Renewable Power Production -- 13.2.2 Water Electrolyzer (For Hydrogen Production) -- 13.2.2.1 CO2 Capture (For Hydrocarbon-Based Fuels) and N2 Production (For Ammonia Fuels) Techniques -- 13.3 The Operating Window of Various P-T-F Pathways -- 13.3.1 Direct Electrochemical Reduction Pathway -- 13.3.2 Water Electrolyzer Followed By Catalytic Step -- 13.3.3 Syngas Followed By a Catalytic Step (Case: Co-Electrolyzer Step) -- 13.4 Thermodynamic Assessment -- 13.4.1 Case 1: Power-To-Methanol -- 13.4.2 Case 2: Power-To-Ammonia -- 13.5 Conclusion -- References -- Index |
subject_GND | (DE-588)4143413-4 |
title | Hybrid power cycle arrangements for lower emissions |
title_auth | Hybrid power cycle arrangements for lower emissions |
title_exact_search | Hybrid power cycle arrangements for lower emissions |
title_exact_search_txtP | Hybrid power cycle arrangements for lower emissions |
title_full | Hybrid power cycle arrangements for lower emissions edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim |
title_fullStr | Hybrid power cycle arrangements for lower emissions edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim |
title_full_unstemmed | Hybrid power cycle arrangements for lower emissions edited by Anoop Kumar Shukla, Onkar Singh, Meeta Sharma, Rakesh Kumar Phanden, J. Paulo Davim |
title_short | Hybrid power cycle arrangements for lower emissions |
title_sort | hybrid power cycle arrangements for lower emissions |
topic_facet | Aufsatzsammlung |
work_keys_str_mv | AT shuklaanoopkumar hybridpowercyclearrangementsforloweremissions AT singhonkar hybridpowercyclearrangementsforloweremissions AT sharmameeta hybridpowercyclearrangementsforloweremissions AT phandenrakeshkumar hybridpowercyclearrangementsforloweremissions AT davimjpaulo hybridpowercyclearrangementsforloweremissions |