Cyberphysical Smart Cities Infrastructures: Optimal Operation and Intelligent Decision Making
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2022
|
Online-Zugang: | DE-Aug4 Volltext |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (323 Seiten) |
ISBN: | 9781119748311 9781119748342 |
DOI: | 10.1002/9781119748342 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221482 | ||
003 | DE-604 | ||
005 | 20230510 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119748311 |9 978-1-119-74831-1 | ||
020 | |a 9781119748342 |c Online |9 9781119748342 | ||
024 | 7 | |a 10.1002/9781119748342 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6826399 | ||
035 | |a (ZDB-30-PAD)EBC6826399 | ||
035 | |a (ZDB-89-EBL)EBL6826399 | ||
035 | |a (OCoLC)1289371334 | ||
035 | |a (DE-599)BVBBV048221482 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 | ||
082 | 0 | |a 307.76 | |
100 | 1 | |a Amini, M. Hadi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cyberphysical Smart Cities Infrastructures |b Optimal Operation and Intelligent Decision Making |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (323 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision‐Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision‐Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI‐Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi‐agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions | |
505 | 8 | |a References -- Chapter 5 Smart Charging and Operation of Electric Fleet Vehicles in a Smart City -- 5.1 Smart Charging in Transportation -- 5.1.1 Available EV Charging Technologies -- 5.1.1.1 Inductive Charging -- 5.1.1.2 Battery Swapping -- 5.1.1.3 Automatic Robotic Charging Connector -- 5.1.1.4 Automatic Ground‐Based Docking Connector -- 5.1.2 Current Regulations on Smart Charging -- 5.2 Cyber‐Physical Aspects of EV Networks -- 5.2.1 Sensing and Cooperative Data Collection -- 5.2.2 Data‐Driven Control and Optimization -- 5.3 Charging of Electric Fleet Vehicles in Smart Cities -- 5.3.1 Intelligent Management of Fleets of Electric Vehicles -- 5.3.1.1 Charging of EV Fleets -- 5.3.1.2 Route Mapping with Charging -- 5.3.2 Electricity Grid Support Services -- 5.3.2.1 Demand Response -- 5.3.2.2 Frequency Response -- 5.3.2.3 Emergency Power -- 5.3.2.4 Emergency Response -- 5.4 Data and Cyber Security of EV Networks -- 5.4.1 Attack Schemes -- 5.4.1.1 Data Injection -- 5.4.1.2 Distributed Denial of Service -- 5.4.1.3 Data and Identity Theft -- 5.4.1.4 Man‐in‐the‐Middle Attack -- 5.4.2 Attack Detection Methods -- 5.4.2.1 Abnormal State Estimation -- 5.4.2.2 Message Encryption and Authentication -- 5.4.2.3 Denial‐of‐Service Attacks -- 5.4.3 Privacy Concerns and Privacy‐Preserving Methods -- 5.5 EV Smart Charging Strategies -- 5.5.1 Optimization Approaches -- 5.5.1.1 Future Scheduling -- 5.5.1.2 Battery Health Optimization -- 5.5.1.3 Energy Loss Minimization -- 5.5.2 Artificial Intelligence Approaches -- 5.5.2.1 Deep Learning for Smart Charging -- 5.5.2.2 Predicting Charging Profiles -- 5.5.3 Coordinated Charging -- 5.5.3.1 Centralized Optimization -- 5.5.3.2 Distributed Optimization -- 5.5.4 Population‐Based Approaches -- 5.5.4.1 Case Study -- 5.6 Conclusion -- Acknowledgments -- References | |
505 | 8 | |a Chapter 6 Risk‐Aware Cyber‐Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk‐Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk‐Aware Routing Algorithm -- 6.4 Risk‐Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk‐Aware Routing and Latency‐Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C‐Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C‐Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking | |
505 | 8 | |a 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision‐Driven Traffic Management -- 8.2.6 Challenges of Computer Vision‐Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F‐score -- 9.5 Findings and Discussion | |
505 | 8 | |a 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R‐GOOSE and R‐SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV) | |
505 | 8 | |a 10.6 Advantages of IEC 61850 (Requirements of Smart Grid IEC 61850) | |
700 | 1 | |a Shafie-khah, Miadreza |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Amini, M. Hadi |t Cyberphysical Smart Cities Infrastructures |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781119748304 |
856 | 4 | 0 | |u https://doi.org/10.1002/9781119748342 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-35-WIC | ||
940 | 1 | |q TUM_PDA_PQE | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119748342 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805076528500834304 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Amini, M. Hadi |
author_facet | Amini, M. Hadi |
author_role | aut |
author_sort | Amini, M. Hadi |
author_variant | m h a mh mha |
building | Verbundindex |
bvnumber | BV048221482 |
collection | ZDB-30-PQE ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision‐Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision‐Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI‐Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi‐agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions References -- Chapter 5 Smart Charging and Operation of Electric Fleet Vehicles in a Smart City -- 5.1 Smart Charging in Transportation -- 5.1.1 Available EV Charging Technologies -- 5.1.1.1 Inductive Charging -- 5.1.1.2 Battery Swapping -- 5.1.1.3 Automatic Robotic Charging Connector -- 5.1.1.4 Automatic Ground‐Based Docking Connector -- 5.1.2 Current Regulations on Smart Charging -- 5.2 Cyber‐Physical Aspects of EV Networks -- 5.2.1 Sensing and Cooperative Data Collection -- 5.2.2 Data‐Driven Control and Optimization -- 5.3 Charging of Electric Fleet Vehicles in Smart Cities -- 5.3.1 Intelligent Management of Fleets of Electric Vehicles -- 5.3.1.1 Charging of EV Fleets -- 5.3.1.2 Route Mapping with Charging -- 5.3.2 Electricity Grid Support Services -- 5.3.2.1 Demand Response -- 5.3.2.2 Frequency Response -- 5.3.2.3 Emergency Power -- 5.3.2.4 Emergency Response -- 5.4 Data and Cyber Security of EV Networks -- 5.4.1 Attack Schemes -- 5.4.1.1 Data Injection -- 5.4.1.2 Distributed Denial of Service -- 5.4.1.3 Data and Identity Theft -- 5.4.1.4 Man‐in‐the‐Middle Attack -- 5.4.2 Attack Detection Methods -- 5.4.2.1 Abnormal State Estimation -- 5.4.2.2 Message Encryption and Authentication -- 5.4.2.3 Denial‐of‐Service Attacks -- 5.4.3 Privacy Concerns and Privacy‐Preserving Methods -- 5.5 EV Smart Charging Strategies -- 5.5.1 Optimization Approaches -- 5.5.1.1 Future Scheduling -- 5.5.1.2 Battery Health Optimization -- 5.5.1.3 Energy Loss Minimization -- 5.5.2 Artificial Intelligence Approaches -- 5.5.2.1 Deep Learning for Smart Charging -- 5.5.2.2 Predicting Charging Profiles -- 5.5.3 Coordinated Charging -- 5.5.3.1 Centralized Optimization -- 5.5.3.2 Distributed Optimization -- 5.5.4 Population‐Based Approaches -- 5.5.4.1 Case Study -- 5.6 Conclusion -- Acknowledgments -- References Chapter 6 Risk‐Aware Cyber‐Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk‐Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk‐Aware Routing Algorithm -- 6.4 Risk‐Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk‐Aware Routing and Latency‐Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C‐Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C‐Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision‐Driven Traffic Management -- 8.2.6 Challenges of Computer Vision‐Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F‐score -- 9.5 Findings and Discussion 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R‐GOOSE and R‐SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV) 10.6 Advantages of IEC 61850 (Requirements of Smart Grid IEC 61850) |
ctrlnum | (ZDB-30-PQE)EBC6826399 (ZDB-30-PAD)EBC6826399 (ZDB-89-EBL)EBL6826399 (OCoLC)1289371334 (DE-599)BVBBV048221482 |
dewey-full | 307.76 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 307 - Communities |
dewey-raw | 307.76 |
dewey-search | 307.76 |
dewey-sort | 3307.76 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
discipline_str_mv | Soziologie |
doi_str_mv | 10.1002/9781119748342 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048221482</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230510</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119748311</subfield><subfield code="9">978-1-119-74831-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119748342</subfield><subfield code="c">Online</subfield><subfield code="9">9781119748342</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119748342</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6826399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6826399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6826399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289371334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221482</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">307.76</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amini, M. Hadi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cyberphysical Smart Cities Infrastructures</subfield><subfield code="b">Optimal Operation and Intelligent Decision Making</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (323 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision‐Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision‐Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI‐Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi‐agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 5 Smart Charging and Operation of Electric Fleet Vehicles in a Smart City -- 5.1 Smart Charging in Transportation -- 5.1.1 Available EV Charging Technologies -- 5.1.1.1 Inductive Charging -- 5.1.1.2 Battery Swapping -- 5.1.1.3 Automatic Robotic Charging Connector -- 5.1.1.4 Automatic Ground‐Based Docking Connector -- 5.1.2 Current Regulations on Smart Charging -- 5.2 Cyber‐Physical Aspects of EV Networks -- 5.2.1 Sensing and Cooperative Data Collection -- 5.2.2 Data‐Driven Control and Optimization -- 5.3 Charging of Electric Fleet Vehicles in Smart Cities -- 5.3.1 Intelligent Management of Fleets of Electric Vehicles -- 5.3.1.1 Charging of EV Fleets -- 5.3.1.2 Route Mapping with Charging -- 5.3.2 Electricity Grid Support Services -- 5.3.2.1 Demand Response -- 5.3.2.2 Frequency Response -- 5.3.2.3 Emergency Power -- 5.3.2.4 Emergency Response -- 5.4 Data and Cyber Security of EV Networks -- 5.4.1 Attack Schemes -- 5.4.1.1 Data Injection -- 5.4.1.2 Distributed Denial of Service -- 5.4.1.3 Data and Identity Theft -- 5.4.1.4 Man‐in‐the‐Middle Attack -- 5.4.2 Attack Detection Methods -- 5.4.2.1 Abnormal State Estimation -- 5.4.2.2 Message Encryption and Authentication -- 5.4.2.3 Denial‐of‐Service Attacks -- 5.4.3 Privacy Concerns and Privacy‐Preserving Methods -- 5.5 EV Smart Charging Strategies -- 5.5.1 Optimization Approaches -- 5.5.1.1 Future Scheduling -- 5.5.1.2 Battery Health Optimization -- 5.5.1.3 Energy Loss Minimization -- 5.5.2 Artificial Intelligence Approaches -- 5.5.2.1 Deep Learning for Smart Charging -- 5.5.2.2 Predicting Charging Profiles -- 5.5.3 Coordinated Charging -- 5.5.3.1 Centralized Optimization -- 5.5.3.2 Distributed Optimization -- 5.5.4 Population‐Based Approaches -- 5.5.4.1 Case Study -- 5.6 Conclusion -- Acknowledgments -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6 Risk‐Aware Cyber‐Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk‐Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk‐Aware Routing Algorithm -- 6.4 Risk‐Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk‐Aware Routing and Latency‐Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C‐Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C‐Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision‐Driven Traffic Management -- 8.2.6 Challenges of Computer Vision‐Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F‐score -- 9.5 Findings and Discussion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R‐GOOSE and R‐SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.6 Advantages of IEC 61850 (Requirements of Smart Grid IEC 61850)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shafie-khah, Miadreza</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Amini, M. Hadi</subfield><subfield code="t">Cyberphysical Smart Cities Infrastructures</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2022</subfield><subfield code="z">9781119748304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/9781119748342</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119748342</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221482 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-20T05:58:44Z |
institution | BVB |
isbn | 9781119748311 9781119748342 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602219 |
oclc_num | 1289371334 |
open_access_boolean | |
owner | DE-Aug4 |
owner_facet | DE-Aug4 |
physical | 1 Online-Ressource (323 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WIC TUM_PDA_PQE ZDB-35-WIC FHA_PDA_WIC_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Amini, M. Hadi Verfasser aut Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making Newark John Wiley & Sons, Incorporated 2022 ©2022 1 Online-Ressource (323 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision‐Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision‐Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI‐Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi‐agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions References -- Chapter 5 Smart Charging and Operation of Electric Fleet Vehicles in a Smart City -- 5.1 Smart Charging in Transportation -- 5.1.1 Available EV Charging Technologies -- 5.1.1.1 Inductive Charging -- 5.1.1.2 Battery Swapping -- 5.1.1.3 Automatic Robotic Charging Connector -- 5.1.1.4 Automatic Ground‐Based Docking Connector -- 5.1.2 Current Regulations on Smart Charging -- 5.2 Cyber‐Physical Aspects of EV Networks -- 5.2.1 Sensing and Cooperative Data Collection -- 5.2.2 Data‐Driven Control and Optimization -- 5.3 Charging of Electric Fleet Vehicles in Smart Cities -- 5.3.1 Intelligent Management of Fleets of Electric Vehicles -- 5.3.1.1 Charging of EV Fleets -- 5.3.1.2 Route Mapping with Charging -- 5.3.2 Electricity Grid Support Services -- 5.3.2.1 Demand Response -- 5.3.2.2 Frequency Response -- 5.3.2.3 Emergency Power -- 5.3.2.4 Emergency Response -- 5.4 Data and Cyber Security of EV Networks -- 5.4.1 Attack Schemes -- 5.4.1.1 Data Injection -- 5.4.1.2 Distributed Denial of Service -- 5.4.1.3 Data and Identity Theft -- 5.4.1.4 Man‐in‐the‐Middle Attack -- 5.4.2 Attack Detection Methods -- 5.4.2.1 Abnormal State Estimation -- 5.4.2.2 Message Encryption and Authentication -- 5.4.2.3 Denial‐of‐Service Attacks -- 5.4.3 Privacy Concerns and Privacy‐Preserving Methods -- 5.5 EV Smart Charging Strategies -- 5.5.1 Optimization Approaches -- 5.5.1.1 Future Scheduling -- 5.5.1.2 Battery Health Optimization -- 5.5.1.3 Energy Loss Minimization -- 5.5.2 Artificial Intelligence Approaches -- 5.5.2.1 Deep Learning for Smart Charging -- 5.5.2.2 Predicting Charging Profiles -- 5.5.3 Coordinated Charging -- 5.5.3.1 Centralized Optimization -- 5.5.3.2 Distributed Optimization -- 5.5.4 Population‐Based Approaches -- 5.5.4.1 Case Study -- 5.6 Conclusion -- Acknowledgments -- References Chapter 6 Risk‐Aware Cyber‐Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk‐Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk‐Aware Routing Algorithm -- 6.4 Risk‐Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk‐Aware Routing and Latency‐Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C‐Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C‐Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision‐Driven Traffic Management -- 8.2.6 Challenges of Computer Vision‐Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F‐score -- 9.5 Findings and Discussion 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R‐GOOSE and R‐SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV) 10.6 Advantages of IEC 61850 (Requirements of Smart Grid IEC 61850) Shafie-khah, Miadreza Sonstige oth Erscheint auch als Druck-Ausgabe Amini, M. Hadi Cyberphysical Smart Cities Infrastructures Newark : John Wiley & Sons, Incorporated,c2022 9781119748304 https://doi.org/10.1002/9781119748342 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Amini, M. Hadi Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision‐Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision‐Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI‐Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi‐agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions References -- Chapter 5 Smart Charging and Operation of Electric Fleet Vehicles in a Smart City -- 5.1 Smart Charging in Transportation -- 5.1.1 Available EV Charging Technologies -- 5.1.1.1 Inductive Charging -- 5.1.1.2 Battery Swapping -- 5.1.1.3 Automatic Robotic Charging Connector -- 5.1.1.4 Automatic Ground‐Based Docking Connector -- 5.1.2 Current Regulations on Smart Charging -- 5.2 Cyber‐Physical Aspects of EV Networks -- 5.2.1 Sensing and Cooperative Data Collection -- 5.2.2 Data‐Driven Control and Optimization -- 5.3 Charging of Electric Fleet Vehicles in Smart Cities -- 5.3.1 Intelligent Management of Fleets of Electric Vehicles -- 5.3.1.1 Charging of EV Fleets -- 5.3.1.2 Route Mapping with Charging -- 5.3.2 Electricity Grid Support Services -- 5.3.2.1 Demand Response -- 5.3.2.2 Frequency Response -- 5.3.2.3 Emergency Power -- 5.3.2.4 Emergency Response -- 5.4 Data and Cyber Security of EV Networks -- 5.4.1 Attack Schemes -- 5.4.1.1 Data Injection -- 5.4.1.2 Distributed Denial of Service -- 5.4.1.3 Data and Identity Theft -- 5.4.1.4 Man‐in‐the‐Middle Attack -- 5.4.2 Attack Detection Methods -- 5.4.2.1 Abnormal State Estimation -- 5.4.2.2 Message Encryption and Authentication -- 5.4.2.3 Denial‐of‐Service Attacks -- 5.4.3 Privacy Concerns and Privacy‐Preserving Methods -- 5.5 EV Smart Charging Strategies -- 5.5.1 Optimization Approaches -- 5.5.1.1 Future Scheduling -- 5.5.1.2 Battery Health Optimization -- 5.5.1.3 Energy Loss Minimization -- 5.5.2 Artificial Intelligence Approaches -- 5.5.2.1 Deep Learning for Smart Charging -- 5.5.2.2 Predicting Charging Profiles -- 5.5.3 Coordinated Charging -- 5.5.3.1 Centralized Optimization -- 5.5.3.2 Distributed Optimization -- 5.5.4 Population‐Based Approaches -- 5.5.4.1 Case Study -- 5.6 Conclusion -- Acknowledgments -- References Chapter 6 Risk‐Aware Cyber‐Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk‐Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk‐Aware Routing Algorithm -- 6.4 Risk‐Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk‐Aware Routing and Latency‐Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C‐Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C‐Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision‐Driven Traffic Management -- 8.2.6 Challenges of Computer Vision‐Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F‐score -- 9.5 Findings and Discussion 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R‐GOOSE and R‐SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV) 10.6 Advantages of IEC 61850 (Requirements of Smart Grid IEC 61850) |
title | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_auth | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_exact_search | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_exact_search_txtP | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_full | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_fullStr | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_full_unstemmed | Cyberphysical Smart Cities Infrastructures Optimal Operation and Intelligent Decision Making |
title_short | Cyberphysical Smart Cities Infrastructures |
title_sort | cyberphysical smart cities infrastructures optimal operation and intelligent decision making |
title_sub | Optimal Operation and Intelligent Decision Making |
url | https://doi.org/10.1002/9781119748342 |
work_keys_str_mv | AT aminimhadi cyberphysicalsmartcitiesinfrastructuresoptimaloperationandintelligentdecisionmaking AT shafiekhahmiadreza cyberphysicalsmartcitiesinfrastructuresoptimaloperationandintelligentdecisionmaking |