Food engineering innovations across the food supply chain:
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
2022
|
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xxxii, 483 Seiten) Illustrationen |
ISBN: | 9780323853590 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221421 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780323853590 |9 978-0-323-85359-0 | ||
035 | |a (ZDB-30-PQE)EBC6821847 | ||
035 | |a (ZDB-30-PAD)EBC6821847 | ||
035 | |a (ZDB-89-EBL)EBL6821847 | ||
035 | |a (OCoLC)1319630944 | ||
035 | |a (DE-599)BVBBV048221421 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 664 | |
084 | |a LEB 900 |2 stub | ||
084 | |a LEB 110 |2 stub | ||
245 | 1 | 0 | |a Food engineering innovations across the food supply chain |c edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxxii, 483 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1 - Understanding and building resilience in food supply chains -- 1.1 Introduction -- 1.2 The challenges for the supply chains of fresh produce -- 1.3 Quantifying resilience -- 1.4 Methodology -- 1.4.1 The supply chain index -- 1.4.2 Testing resilience empirically -- 1.4.3 Optimizing resilient supply chains -- 1.5 Case study and discussion -- 1.6 Concluding remarks -- References -- Chapter 2 - Sustainable food systems -- 2.1 Introduction -- 2.2 Sustainability of food systems -- 2.2.1 Linear food system issues -- 2.2.2 Definition of sustainable food systems -- 2.2.3 Technoeconomic analysis -- 2.2.4 Life cycle analysis -- 2.3 Features of a sustainable food system -- 2.3.1 Circular economy principles -- 2.3.2 Sustainable agriculture -- 2.3.3 Localized food systems -- 2.3.4 Innovative increased shelf-life products to prevent waste -- 2.3.5 Integrated valorization pathways for food excess and by-products -- 2.4 A "zero-waste" approach for sustainable food systems -- 2.4.1 Transitioning to sustainable food systems -- 2.4.2 System strategies for sustainability -- 2.4.3 Sustainable food processing -- 2.4.4 Sustainable food and beverage initiatives in Australia -- 2.5 The future of sustainable food systems -- Abbreviations -- References -- Chapter 3 - Sustainability of the food supply chain -- energy, water and waste -- 3.1 Introduction -- 3.2 Status of energy conservation -- 3.3 Fresh water demand -- 3.4 Food waste -- 3.5 Life cycle assessment -- 3.6 Process analysis and design -- 3.6.1 Applications to process analysis to energy conservation -- 3.6.2 Applications of process analysis to water conservation -- 3.6.3 Applications to process analysis to waste reduction | |
505 | 8 | |a 3.7 Conclusions and recommendations -- Acknowledgments -- References -- Further reading -- Chapter 4 - Recovery of high-value compounds from food by-products -- 4.1 Introduction -- 4.2 Natural compounds recovered from plant-based by-products -- 4.2.1 Antioxidants -- 4.2.1.1 Vitamin C -- 4.2.1.2 Polyphenols -- 4.2.1.3 Carotenoids -- 4.2.1.4 Vitamin E -- 4.2.1.5 Solanesol -- 4.2.2 Dietary fibers -- 4.2.3 Plant-based proteins -- 4.2.4 Other bioactive compounds -- 4.3 High-value-added compounds from animal-based by-products -- 4.3.1 Bioactive peptides and polysaccharides -- 4.3.2 New trends in recovery of valuable compounds from animal by-products -- 4.3.2.1 New techniques for collagen recovery -- 4.3.2.2 Recovery other proteins from animal by-products -- 4.3.2.3 Recovery valuable compounds from dairy by-products -- 4.4 Antiviral compounds from food by-products -- 4.5 Concluding remarks -- Acknowledgments -- References -- Chapter 5 - Recent developments in fermentation technology: toward the next revolution in food production -- 5.1 Introduction -- 5.2 Fermentation process engineering -- 5.2.1 Introduction -- 5.2.2 Fermentation process design -- 5.2.3 Fermenter design -- 5.2.3.1 Submerged fermenters -- 5.2.3.2 Solid-state fermenters -- 5.3 Industrial food fermentation -- 5.3.1 Advances in industrial vegetable fermentation -- 5.3.2 Advances in other fermentation processes -- 5.4 Recent developments in food fermentation -- 5.4.1 Innovations in traditional or "natural" food fermentation -- 5.4.2 Precision fermentation for production of food products ingredients -- 5.4.3 Fermentation for valorization of food waste -- 5.4.4 Fermentation and the alternative protein trend -- 5.5 Conclusion and future perspectives -- References -- Chapter 6 - Strategies to mitigate protein deficit -- 6.1 Introduction | |
505 | 8 | |a 6.2 Protein demand -- 6.3 Sustainability of alternative proteins sources -- 6.3.1 Plant -- 6.3.2 Meat and fish by products -- 6.3.3 Microbial -- 6.3.4 Insects -- 6.3.5 Algae -- 6.3.6 In vitro meat -- 6.4 Alternative protein extraction techniques -- 6.4.1 Acid-based extraction -- 6.4.2 Alkaline-based extraction -- 6.4.3 Enzyme assisted extraction -- 6.4.4 Ultrasound assisted extraction -- 6.4.5 Pulsed electric field assisted extraction -- 6.4.6 Microwave assisted extraction -- 6.5 Key determinants for the acceptance of alternative proteins -- 6.5.1 Food neophobia -- 6.5.2 Disgust -- 6.5.3 Environmental awareness -- 6.5.4 Health consciousness -- 6.5.5 Risk assessment -- 6.5.6 Personal experiences -- 6.5.7 Familiarity -- 6.5.8 Socio demographic factors -- 6.6 Health considerations -- 6.6.1 Digestibility -- 6.6.2 Cytotoxicity -- 6.6.3 Allergenicity -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 - Key technological advances of extrusion processing -- 7.1 Introduction -- 7.2 Research approach -- 7.3 Analysis of material design properties -- 7.3.1 Reaction properties -- 7.3.2 Rheological properties -- 7.4 Analysis of processing conditions -- 7.4.1 Analysis of thermal stress profile -- 7.4.2 Analysis of thermomechanical stress profile and mixing characteristics -- 7.5 Concluding remarks -- References -- Chapter 8 - Key technological advances and industrialization of continuous flow microwave processing for foods and beverages -- 8.1 Introduction -- 8.2 Continuous flow microwave processing prototypes -- 8.2.1 First generation of continuous flow microwave processing technologies -- 8.2.2 Second generation of continuous flow microwave processing technologies -- 8.2.3 Third generation of continuous flow microwave processing technologies -- 8.3 Intellectual property -- 8.4 Conclusions | |
505 | 8 | |a References -- Chapter 9 - Update on emerging technologies including novel applications: radio frequency -- 9.1 Introduction -- 9.2 Radio frequency disinfestation of agricultural products -- 9.3 Radio frequency pasteurization of food products -- 9.4 Radio frequency pasteurization of food powders -- 9.5 Radio frequency tempering and thawing of frozen foods -- 9.6 Advantages and disadvantages of radio frequency processing -- 9.7 Mathematical modeling -- 9.8 Conclusions -- References -- Chapter 10 - Recent advances in freezing processes: an overview -- 10.1 Introduction -- 10.2 Noninvasive innovative freezing methods -- 10.2.1 Pressure shift freezing and pressure assisted freezing -- 10.2.2 Static electric and magnetic fields -- impact on phase change and freezing -- 10.2.2.1 Interaction between atoms, molecules, and electric field -- 10.2.3 Possible mechanisms -- 10.2.3.1 Magnetic field assisted freezing -- interaction between atoms, molecules, and magnetic field -- 10.2.4 Microwave (MW) and radio frequency (RF) assisted freezing -- 10.3 Ultrasound assisted freezing -- 10.4 Substances regulating freezing process and final product quality -- 10.5 Chilling, superchilling, and supercooling -- 10.5.1 Chilling applied to foods -- 10.5.2 Impact of superchilling of food products quality -- 10.5.3 Alternative supercooling technology supported by external magnetic and electric fields -- 10.6 Conclusions -- References -- Chapter 11 - Cooling of milk on dairy farms: an application of a novel ice encapsulated storage system in New Zealand -- 11.1 Introduction -- 11.2 Background -- 11.2.1 NZ milk cooling regulations -- 11.2.1.1 NZCP1 Version 5 amendment 2 (old milk cooling standards) -- 11.2.1.2 NZCP1 2017 (new milk cooling standards) -- 11.2.2 Electricity Tariffs -- 11.2.3 Milk cooling operations -- 11.2.3.1 Precooling | |
505 | 8 | |a 11.2.3.2 Cooling in storage vat -- 11.3 Options for further cooling of milk -- 11.3.1 Cooling towers -- 11.3.2 Instant chilling -- 11.3.3 Chilled water storage system -- 11.3.3.1 Chilled water storage system installed in Coldstream Downs farm, New Zealand: a case study -- 11.3.4 Ice storage systems -- 11.3.4.1 Ice-on-tube storage system -- 11.3.4.2 Packed bed ice encapsulated -- 11.3.5 Innovative approaches for ice encapsulation -- 11.3.5.1 Packed bed of graphite sphere containing PCM (water) -- 11.3.5.2 Ice slab storage system -- 11.4 Pilot scale ice slab storage system -- 11.4.1 Process description -- 11.4.2 System operation -- 11.4.2.1 Making ice (charging process-night) -- 11.4.2.2 Melting ice (discharging process-milking period) -- 11.4.3 Technical results -- 11.4.4 Cost analysis -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 - Novel drying technologies using electric and electromagnetic fields -- 12.1 Introduction -- 12.2 Microwave and radio frequency drying -- 12.3 Electrohydrodynamic drying -- 12.4 Conclusions and perspectives -- References -- Chapter 13 - Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials -- 13.1 Introduction -- 13.2 Principles of electrostatic spray drying -- 13.3 Applications of electrostatic spray drying -- 13.3.1 Whole milk, skim milk, and infant milk formulae -- 13.3.2 Colostrum and lactoferrin powders -- 13.3.3 Yoghurt powders -- 13.3.4 Oil encapsulation -- 13.4 Conclusions -- References -- Chapter 14 - Dairy encapsulation systems by atomization-based technology -- 14.1 Introduction -- 14.2 Atomization-based technology for encapsulation -- 14.2.1 Spray drying -- 14.2.2 Spray chilling -- 14.2.3 Fluidized bed coating -- 14.3 Dairy ingredients as wall materials for encapsulation -- 14.3.1 Dairy proteins (casein/whey) | |
505 | 8 | |a 14.3.2 Lactose | |
700 | 1 | |a Juliano, Pablo |4 edt | |
700 | 1 | |a Knoerzer, Kai |d 1976- |0 (DE-588)132295946 |4 edt | |
700 | 1 | |a Sellahewa, Jayantha |0 (DE-588)1274767873 |4 edt | |
700 | 1 | |a Nguyen, Minh H. |4 edt | |
700 | 1 | |a Buckow, Roman |d 1973- |0 (DE-588)132356058 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Juliano, Pablo |t Food Engineering Innovations Across the Food Supply Chain |d San Diego : Elsevier Science & Technology,c2021 |n Druck-Ausgabe |z 978-0-12-821292-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033602158 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6821847 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002283700224 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Juliano, Pablo Knoerzer, Kai 1976- Sellahewa, Jayantha Nguyen, Minh H. Buckow, Roman 1973- |
author2_role | edt edt edt edt edt |
author2_variant | p j pj k k kk j s js m h n mh mhn r b rb |
author_GND | (DE-588)132295946 (DE-588)1274767873 (DE-588)132356058 |
author_facet | Juliano, Pablo Knoerzer, Kai 1976- Sellahewa, Jayantha Nguyen, Minh H. Buckow, Roman 1973- |
building | Verbundindex |
bvnumber | BV048221421 |
classification_tum | LEB 900 LEB 110 |
collection | ZDB-30-PQE |
contents | Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1 - Understanding and building resilience in food supply chains -- 1.1 Introduction -- 1.2 The challenges for the supply chains of fresh produce -- 1.3 Quantifying resilience -- 1.4 Methodology -- 1.4.1 The supply chain index -- 1.4.2 Testing resilience empirically -- 1.4.3 Optimizing resilient supply chains -- 1.5 Case study and discussion -- 1.6 Concluding remarks -- References -- Chapter 2 - Sustainable food systems -- 2.1 Introduction -- 2.2 Sustainability of food systems -- 2.2.1 Linear food system issues -- 2.2.2 Definition of sustainable food systems -- 2.2.3 Technoeconomic analysis -- 2.2.4 Life cycle analysis -- 2.3 Features of a sustainable food system -- 2.3.1 Circular economy principles -- 2.3.2 Sustainable agriculture -- 2.3.3 Localized food systems -- 2.3.4 Innovative increased shelf-life products to prevent waste -- 2.3.5 Integrated valorization pathways for food excess and by-products -- 2.4 A "zero-waste" approach for sustainable food systems -- 2.4.1 Transitioning to sustainable food systems -- 2.4.2 System strategies for sustainability -- 2.4.3 Sustainable food processing -- 2.4.4 Sustainable food and beverage initiatives in Australia -- 2.5 The future of sustainable food systems -- Abbreviations -- References -- Chapter 3 - Sustainability of the food supply chain -- energy, water and waste -- 3.1 Introduction -- 3.2 Status of energy conservation -- 3.3 Fresh water demand -- 3.4 Food waste -- 3.5 Life cycle assessment -- 3.6 Process analysis and design -- 3.6.1 Applications to process analysis to energy conservation -- 3.6.2 Applications of process analysis to water conservation -- 3.6.3 Applications to process analysis to waste reduction 3.7 Conclusions and recommendations -- Acknowledgments -- References -- Further reading -- Chapter 4 - Recovery of high-value compounds from food by-products -- 4.1 Introduction -- 4.2 Natural compounds recovered from plant-based by-products -- 4.2.1 Antioxidants -- 4.2.1.1 Vitamin C -- 4.2.1.2 Polyphenols -- 4.2.1.3 Carotenoids -- 4.2.1.4 Vitamin E -- 4.2.1.5 Solanesol -- 4.2.2 Dietary fibers -- 4.2.3 Plant-based proteins -- 4.2.4 Other bioactive compounds -- 4.3 High-value-added compounds from animal-based by-products -- 4.3.1 Bioactive peptides and polysaccharides -- 4.3.2 New trends in recovery of valuable compounds from animal by-products -- 4.3.2.1 New techniques for collagen recovery -- 4.3.2.2 Recovery other proteins from animal by-products -- 4.3.2.3 Recovery valuable compounds from dairy by-products -- 4.4 Antiviral compounds from food by-products -- 4.5 Concluding remarks -- Acknowledgments -- References -- Chapter 5 - Recent developments in fermentation technology: toward the next revolution in food production -- 5.1 Introduction -- 5.2 Fermentation process engineering -- 5.2.1 Introduction -- 5.2.2 Fermentation process design -- 5.2.3 Fermenter design -- 5.2.3.1 Submerged fermenters -- 5.2.3.2 Solid-state fermenters -- 5.3 Industrial food fermentation -- 5.3.1 Advances in industrial vegetable fermentation -- 5.3.2 Advances in other fermentation processes -- 5.4 Recent developments in food fermentation -- 5.4.1 Innovations in traditional or "natural" food fermentation -- 5.4.2 Precision fermentation for production of food products ingredients -- 5.4.3 Fermentation for valorization of food waste -- 5.4.4 Fermentation and the alternative protein trend -- 5.5 Conclusion and future perspectives -- References -- Chapter 6 - Strategies to mitigate protein deficit -- 6.1 Introduction 6.2 Protein demand -- 6.3 Sustainability of alternative proteins sources -- 6.3.1 Plant -- 6.3.2 Meat and fish by products -- 6.3.3 Microbial -- 6.3.4 Insects -- 6.3.5 Algae -- 6.3.6 In vitro meat -- 6.4 Alternative protein extraction techniques -- 6.4.1 Acid-based extraction -- 6.4.2 Alkaline-based extraction -- 6.4.3 Enzyme assisted extraction -- 6.4.4 Ultrasound assisted extraction -- 6.4.5 Pulsed electric field assisted extraction -- 6.4.6 Microwave assisted extraction -- 6.5 Key determinants for the acceptance of alternative proteins -- 6.5.1 Food neophobia -- 6.5.2 Disgust -- 6.5.3 Environmental awareness -- 6.5.4 Health consciousness -- 6.5.5 Risk assessment -- 6.5.6 Personal experiences -- 6.5.7 Familiarity -- 6.5.8 Socio demographic factors -- 6.6 Health considerations -- 6.6.1 Digestibility -- 6.6.2 Cytotoxicity -- 6.6.3 Allergenicity -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 - Key technological advances of extrusion processing -- 7.1 Introduction -- 7.2 Research approach -- 7.3 Analysis of material design properties -- 7.3.1 Reaction properties -- 7.3.2 Rheological properties -- 7.4 Analysis of processing conditions -- 7.4.1 Analysis of thermal stress profile -- 7.4.2 Analysis of thermomechanical stress profile and mixing characteristics -- 7.5 Concluding remarks -- References -- Chapter 8 - Key technological advances and industrialization of continuous flow microwave processing for foods and beverages -- 8.1 Introduction -- 8.2 Continuous flow microwave processing prototypes -- 8.2.1 First generation of continuous flow microwave processing technologies -- 8.2.2 Second generation of continuous flow microwave processing technologies -- 8.2.3 Third generation of continuous flow microwave processing technologies -- 8.3 Intellectual property -- 8.4 Conclusions References -- Chapter 9 - Update on emerging technologies including novel applications: radio frequency -- 9.1 Introduction -- 9.2 Radio frequency disinfestation of agricultural products -- 9.3 Radio frequency pasteurization of food products -- 9.4 Radio frequency pasteurization of food powders -- 9.5 Radio frequency tempering and thawing of frozen foods -- 9.6 Advantages and disadvantages of radio frequency processing -- 9.7 Mathematical modeling -- 9.8 Conclusions -- References -- Chapter 10 - Recent advances in freezing processes: an overview -- 10.1 Introduction -- 10.2 Noninvasive innovative freezing methods -- 10.2.1 Pressure shift freezing and pressure assisted freezing -- 10.2.2 Static electric and magnetic fields -- impact on phase change and freezing -- 10.2.2.1 Interaction between atoms, molecules, and electric field -- 10.2.3 Possible mechanisms -- 10.2.3.1 Magnetic field assisted freezing -- interaction between atoms, molecules, and magnetic field -- 10.2.4 Microwave (MW) and radio frequency (RF) assisted freezing -- 10.3 Ultrasound assisted freezing -- 10.4 Substances regulating freezing process and final product quality -- 10.5 Chilling, superchilling, and supercooling -- 10.5.1 Chilling applied to foods -- 10.5.2 Impact of superchilling of food products quality -- 10.5.3 Alternative supercooling technology supported by external magnetic and electric fields -- 10.6 Conclusions -- References -- Chapter 11 - Cooling of milk on dairy farms: an application of a novel ice encapsulated storage system in New Zealand -- 11.1 Introduction -- 11.2 Background -- 11.2.1 NZ milk cooling regulations -- 11.2.1.1 NZCP1 Version 5 amendment 2 (old milk cooling standards) -- 11.2.1.2 NZCP1 2017 (new milk cooling standards) -- 11.2.2 Electricity Tariffs -- 11.2.3 Milk cooling operations -- 11.2.3.1 Precooling 11.2.3.2 Cooling in storage vat -- 11.3 Options for further cooling of milk -- 11.3.1 Cooling towers -- 11.3.2 Instant chilling -- 11.3.3 Chilled water storage system -- 11.3.3.1 Chilled water storage system installed in Coldstream Downs farm, New Zealand: a case study -- 11.3.4 Ice storage systems -- 11.3.4.1 Ice-on-tube storage system -- 11.3.4.2 Packed bed ice encapsulated -- 11.3.5 Innovative approaches for ice encapsulation -- 11.3.5.1 Packed bed of graphite sphere containing PCM (water) -- 11.3.5.2 Ice slab storage system -- 11.4 Pilot scale ice slab storage system -- 11.4.1 Process description -- 11.4.2 System operation -- 11.4.2.1 Making ice (charging process-night) -- 11.4.2.2 Melting ice (discharging process-milking period) -- 11.4.3 Technical results -- 11.4.4 Cost analysis -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 - Novel drying technologies using electric and electromagnetic fields -- 12.1 Introduction -- 12.2 Microwave and radio frequency drying -- 12.3 Electrohydrodynamic drying -- 12.4 Conclusions and perspectives -- References -- Chapter 13 - Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials -- 13.1 Introduction -- 13.2 Principles of electrostatic spray drying -- 13.3 Applications of electrostatic spray drying -- 13.3.1 Whole milk, skim milk, and infant milk formulae -- 13.3.2 Colostrum and lactoferrin powders -- 13.3.3 Yoghurt powders -- 13.3.4 Oil encapsulation -- 13.4 Conclusions -- References -- Chapter 14 - Dairy encapsulation systems by atomization-based technology -- 14.1 Introduction -- 14.2 Atomization-based technology for encapsulation -- 14.2.1 Spray drying -- 14.2.2 Spray chilling -- 14.2.3 Fluidized bed coating -- 14.3 Dairy ingredients as wall materials for encapsulation -- 14.3.1 Dairy proteins (casein/whey) 14.3.2 Lactose |
ctrlnum | (ZDB-30-PQE)EBC6821847 (ZDB-30-PAD)EBC6821847 (ZDB-89-EBL)EBL6821847 (OCoLC)1319630944 (DE-599)BVBBV048221421 |
dewey-full | 664 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 664 - Food technology |
dewey-raw | 664 |
dewey-search | 664 |
dewey-sort | 3664 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Lebensmitteltechnologie Wirtschaftswissenschaften |
discipline_str_mv | Chemie / Pharmazie Lebensmitteltechnologie Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11018nmm a2200493zc 4500</leader><controlfield tag="001">BV048221421</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323853590</subfield><subfield code="9">978-0-323-85359-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6821847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6821847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6821847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1319630944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">664</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LEB 900</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LEB 110</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Food engineering innovations across the food supply chain</subfield><subfield code="c">edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxii, 483 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1 - Understanding and building resilience in food supply chains -- 1.1 Introduction -- 1.2 The challenges for the supply chains of fresh produce -- 1.3 Quantifying resilience -- 1.4 Methodology -- 1.4.1 The supply chain index -- 1.4.2 Testing resilience empirically -- 1.4.3 Optimizing resilient supply chains -- 1.5 Case study and discussion -- 1.6 Concluding remarks -- References -- Chapter 2 - Sustainable food systems -- 2.1 Introduction -- 2.2 Sustainability of food systems -- 2.2.1 Linear food system issues -- 2.2.2 Definition of sustainable food systems -- 2.2.3 Technoeconomic analysis -- 2.2.4 Life cycle analysis -- 2.3 Features of a sustainable food system -- 2.3.1 Circular economy principles -- 2.3.2 Sustainable agriculture -- 2.3.3 Localized food systems -- 2.3.4 Innovative increased shelf-life products to prevent waste -- 2.3.5 Integrated valorization pathways for food excess and by-products -- 2.4 A "zero-waste" approach for sustainable food systems -- 2.4.1 Transitioning to sustainable food systems -- 2.4.2 System strategies for sustainability -- 2.4.3 Sustainable food processing -- 2.4.4 Sustainable food and beverage initiatives in Australia -- 2.5 The future of sustainable food systems -- Abbreviations -- References -- Chapter 3 - Sustainability of the food supply chain -- energy, water and waste -- 3.1 Introduction -- 3.2 Status of energy conservation -- 3.3 Fresh water demand -- 3.4 Food waste -- 3.5 Life cycle assessment -- 3.6 Process analysis and design -- 3.6.1 Applications to process analysis to energy conservation -- 3.6.2 Applications of process analysis to water conservation -- 3.6.3 Applications to process analysis to waste reduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7 Conclusions and recommendations -- Acknowledgments -- References -- Further reading -- Chapter 4 - Recovery of high-value compounds from food by-products -- 4.1 Introduction -- 4.2 Natural compounds recovered from plant-based by-products -- 4.2.1 Antioxidants -- 4.2.1.1 Vitamin C -- 4.2.1.2 Polyphenols -- 4.2.1.3 Carotenoids -- 4.2.1.4 Vitamin E -- 4.2.1.5 Solanesol -- 4.2.2 Dietary fibers -- 4.2.3 Plant-based proteins -- 4.2.4 Other bioactive compounds -- 4.3 High-value-added compounds from animal-based by-products -- 4.3.1 Bioactive peptides and polysaccharides -- 4.3.2 New trends in recovery of valuable compounds from animal by-products -- 4.3.2.1 New techniques for collagen recovery -- 4.3.2.2 Recovery other proteins from animal by-products -- 4.3.2.3 Recovery valuable compounds from dairy by-products -- 4.4 Antiviral compounds from food by-products -- 4.5 Concluding remarks -- Acknowledgments -- References -- Chapter 5 - Recent developments in fermentation technology: toward the next revolution in food production -- 5.1 Introduction -- 5.2 Fermentation process engineering -- 5.2.1 Introduction -- 5.2.2 Fermentation process design -- 5.2.3 Fermenter design -- 5.2.3.1 Submerged fermenters -- 5.2.3.2 Solid-state fermenters -- 5.3 Industrial food fermentation -- 5.3.1 Advances in industrial vegetable fermentation -- 5.3.2 Advances in other fermentation processes -- 5.4 Recent developments in food fermentation -- 5.4.1 Innovations in traditional or "natural" food fermentation -- 5.4.2 Precision fermentation for production of food products ingredients -- 5.4.3 Fermentation for valorization of food waste -- 5.4.4 Fermentation and the alternative protein trend -- 5.5 Conclusion and future perspectives -- References -- Chapter 6 - Strategies to mitigate protein deficit -- 6.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 Protein demand -- 6.3 Sustainability of alternative proteins sources -- 6.3.1 Plant -- 6.3.2 Meat and fish by products -- 6.3.3 Microbial -- 6.3.4 Insects -- 6.3.5 Algae -- 6.3.6 In vitro meat -- 6.4 Alternative protein extraction techniques -- 6.4.1 Acid-based extraction -- 6.4.2 Alkaline-based extraction -- 6.4.3 Enzyme assisted extraction -- 6.4.4 Ultrasound assisted extraction -- 6.4.5 Pulsed electric field assisted extraction -- 6.4.6 Microwave assisted extraction -- 6.5 Key determinants for the acceptance of alternative proteins -- 6.5.1 Food neophobia -- 6.5.2 Disgust -- 6.5.3 Environmental awareness -- 6.5.4 Health consciousness -- 6.5.5 Risk assessment -- 6.5.6 Personal experiences -- 6.5.7 Familiarity -- 6.5.8 Socio demographic factors -- 6.6 Health considerations -- 6.6.1 Digestibility -- 6.6.2 Cytotoxicity -- 6.6.3 Allergenicity -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 - Key technological advances of extrusion processing -- 7.1 Introduction -- 7.2 Research approach -- 7.3 Analysis of material design properties -- 7.3.1 Reaction properties -- 7.3.2 Rheological properties -- 7.4 Analysis of processing conditions -- 7.4.1 Analysis of thermal stress profile -- 7.4.2 Analysis of thermomechanical stress profile and mixing characteristics -- 7.5 Concluding remarks -- References -- Chapter 8 - Key technological advances and industrialization of continuous flow microwave processing for foods and beverages -- 8.1 Introduction -- 8.2 Continuous flow microwave processing prototypes -- 8.2.1 First generation of continuous flow microwave processing technologies -- 8.2.2 Second generation of continuous flow microwave processing technologies -- 8.2.3 Third generation of continuous flow microwave processing technologies -- 8.3 Intellectual property -- 8.4 Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 9 - Update on emerging technologies including novel applications: radio frequency -- 9.1 Introduction -- 9.2 Radio frequency disinfestation of agricultural products -- 9.3 Radio frequency pasteurization of food products -- 9.4 Radio frequency pasteurization of food powders -- 9.5 Radio frequency tempering and thawing of frozen foods -- 9.6 Advantages and disadvantages of radio frequency processing -- 9.7 Mathematical modeling -- 9.8 Conclusions -- References -- Chapter 10 - Recent advances in freezing processes: an overview -- 10.1 Introduction -- 10.2 Noninvasive innovative freezing methods -- 10.2.1 Pressure shift freezing and pressure assisted freezing -- 10.2.2 Static electric and magnetic fields -- impact on phase change and freezing -- 10.2.2.1 Interaction between atoms, molecules, and electric field -- 10.2.3 Possible mechanisms -- 10.2.3.1 Magnetic field assisted freezing -- interaction between atoms, molecules, and magnetic field -- 10.2.4 Microwave (MW) and radio frequency (RF) assisted freezing -- 10.3 Ultrasound assisted freezing -- 10.4 Substances regulating freezing process and final product quality -- 10.5 Chilling, superchilling, and supercooling -- 10.5.1 Chilling applied to foods -- 10.5.2 Impact of superchilling of food products quality -- 10.5.3 Alternative supercooling technology supported by external magnetic and electric fields -- 10.6 Conclusions -- References -- Chapter 11 - Cooling of milk on dairy farms: an application of a novel ice encapsulated storage system in New Zealand -- 11.1 Introduction -- 11.2 Background -- 11.2.1 NZ milk cooling regulations -- 11.2.1.1 NZCP1 Version 5 amendment 2 (old milk cooling standards) -- 11.2.1.2 NZCP1 2017 (new milk cooling standards) -- 11.2.2 Electricity Tariffs -- 11.2.3 Milk cooling operations -- 11.2.3.1 Precooling</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.2.3.2 Cooling in storage vat -- 11.3 Options for further cooling of milk -- 11.3.1 Cooling towers -- 11.3.2 Instant chilling -- 11.3.3 Chilled water storage system -- 11.3.3.1 Chilled water storage system installed in Coldstream Downs farm, New Zealand: a case study -- 11.3.4 Ice storage systems -- 11.3.4.1 Ice-on-tube storage system -- 11.3.4.2 Packed bed ice encapsulated -- 11.3.5 Innovative approaches for ice encapsulation -- 11.3.5.1 Packed bed of graphite sphere containing PCM (water) -- 11.3.5.2 Ice slab storage system -- 11.4 Pilot scale ice slab storage system -- 11.4.1 Process description -- 11.4.2 System operation -- 11.4.2.1 Making ice (charging process-night) -- 11.4.2.2 Melting ice (discharging process-milking period) -- 11.4.3 Technical results -- 11.4.4 Cost analysis -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 - Novel drying technologies using electric and electromagnetic fields -- 12.1 Introduction -- 12.2 Microwave and radio frequency drying -- 12.3 Electrohydrodynamic drying -- 12.4 Conclusions and perspectives -- References -- Chapter 13 - Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials -- 13.1 Introduction -- 13.2 Principles of electrostatic spray drying -- 13.3 Applications of electrostatic spray drying -- 13.3.1 Whole milk, skim milk, and infant milk formulae -- 13.3.2 Colostrum and lactoferrin powders -- 13.3.3 Yoghurt powders -- 13.3.4 Oil encapsulation -- 13.4 Conclusions -- References -- Chapter 14 - Dairy encapsulation systems by atomization-based technology -- 14.1 Introduction -- 14.2 Atomization-based technology for encapsulation -- 14.2.1 Spray drying -- 14.2.2 Spray chilling -- 14.2.3 Fluidized bed coating -- 14.3 Dairy ingredients as wall materials for encapsulation -- 14.3.1 Dairy proteins (casein/whey)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">14.3.2 Lactose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juliano, Pablo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knoerzer, Kai</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)132295946</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sellahewa, Jayantha</subfield><subfield code="0">(DE-588)1274767873</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Minh H.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buckow, Roman</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)132356058</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Juliano, Pablo</subfield><subfield code="t">Food Engineering Innovations Across the Food Supply Chain</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-821292-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602158</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6821847</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221421 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:25Z |
institution | BVB |
isbn | 9780323853590 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602158 |
oclc_num | 1319630944 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxxii, 483 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Food engineering innovations across the food supply chain edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press, an imprint of Elsevier 2022 © 2022 1 Online-Ressource (xxxii, 483 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1 - Understanding and building resilience in food supply chains -- 1.1 Introduction -- 1.2 The challenges for the supply chains of fresh produce -- 1.3 Quantifying resilience -- 1.4 Methodology -- 1.4.1 The supply chain index -- 1.4.2 Testing resilience empirically -- 1.4.3 Optimizing resilient supply chains -- 1.5 Case study and discussion -- 1.6 Concluding remarks -- References -- Chapter 2 - Sustainable food systems -- 2.1 Introduction -- 2.2 Sustainability of food systems -- 2.2.1 Linear food system issues -- 2.2.2 Definition of sustainable food systems -- 2.2.3 Technoeconomic analysis -- 2.2.4 Life cycle analysis -- 2.3 Features of a sustainable food system -- 2.3.1 Circular economy principles -- 2.3.2 Sustainable agriculture -- 2.3.3 Localized food systems -- 2.3.4 Innovative increased shelf-life products to prevent waste -- 2.3.5 Integrated valorization pathways for food excess and by-products -- 2.4 A "zero-waste" approach for sustainable food systems -- 2.4.1 Transitioning to sustainable food systems -- 2.4.2 System strategies for sustainability -- 2.4.3 Sustainable food processing -- 2.4.4 Sustainable food and beverage initiatives in Australia -- 2.5 The future of sustainable food systems -- Abbreviations -- References -- Chapter 3 - Sustainability of the food supply chain -- energy, water and waste -- 3.1 Introduction -- 3.2 Status of energy conservation -- 3.3 Fresh water demand -- 3.4 Food waste -- 3.5 Life cycle assessment -- 3.6 Process analysis and design -- 3.6.1 Applications to process analysis to energy conservation -- 3.6.2 Applications of process analysis to water conservation -- 3.6.3 Applications to process analysis to waste reduction 3.7 Conclusions and recommendations -- Acknowledgments -- References -- Further reading -- Chapter 4 - Recovery of high-value compounds from food by-products -- 4.1 Introduction -- 4.2 Natural compounds recovered from plant-based by-products -- 4.2.1 Antioxidants -- 4.2.1.1 Vitamin C -- 4.2.1.2 Polyphenols -- 4.2.1.3 Carotenoids -- 4.2.1.4 Vitamin E -- 4.2.1.5 Solanesol -- 4.2.2 Dietary fibers -- 4.2.3 Plant-based proteins -- 4.2.4 Other bioactive compounds -- 4.3 High-value-added compounds from animal-based by-products -- 4.3.1 Bioactive peptides and polysaccharides -- 4.3.2 New trends in recovery of valuable compounds from animal by-products -- 4.3.2.1 New techniques for collagen recovery -- 4.3.2.2 Recovery other proteins from animal by-products -- 4.3.2.3 Recovery valuable compounds from dairy by-products -- 4.4 Antiviral compounds from food by-products -- 4.5 Concluding remarks -- Acknowledgments -- References -- Chapter 5 - Recent developments in fermentation technology: toward the next revolution in food production -- 5.1 Introduction -- 5.2 Fermentation process engineering -- 5.2.1 Introduction -- 5.2.2 Fermentation process design -- 5.2.3 Fermenter design -- 5.2.3.1 Submerged fermenters -- 5.2.3.2 Solid-state fermenters -- 5.3 Industrial food fermentation -- 5.3.1 Advances in industrial vegetable fermentation -- 5.3.2 Advances in other fermentation processes -- 5.4 Recent developments in food fermentation -- 5.4.1 Innovations in traditional or "natural" food fermentation -- 5.4.2 Precision fermentation for production of food products ingredients -- 5.4.3 Fermentation for valorization of food waste -- 5.4.4 Fermentation and the alternative protein trend -- 5.5 Conclusion and future perspectives -- References -- Chapter 6 - Strategies to mitigate protein deficit -- 6.1 Introduction 6.2 Protein demand -- 6.3 Sustainability of alternative proteins sources -- 6.3.1 Plant -- 6.3.2 Meat and fish by products -- 6.3.3 Microbial -- 6.3.4 Insects -- 6.3.5 Algae -- 6.3.6 In vitro meat -- 6.4 Alternative protein extraction techniques -- 6.4.1 Acid-based extraction -- 6.4.2 Alkaline-based extraction -- 6.4.3 Enzyme assisted extraction -- 6.4.4 Ultrasound assisted extraction -- 6.4.5 Pulsed electric field assisted extraction -- 6.4.6 Microwave assisted extraction -- 6.5 Key determinants for the acceptance of alternative proteins -- 6.5.1 Food neophobia -- 6.5.2 Disgust -- 6.5.3 Environmental awareness -- 6.5.4 Health consciousness -- 6.5.5 Risk assessment -- 6.5.6 Personal experiences -- 6.5.7 Familiarity -- 6.5.8 Socio demographic factors -- 6.6 Health considerations -- 6.6.1 Digestibility -- 6.6.2 Cytotoxicity -- 6.6.3 Allergenicity -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 - Key technological advances of extrusion processing -- 7.1 Introduction -- 7.2 Research approach -- 7.3 Analysis of material design properties -- 7.3.1 Reaction properties -- 7.3.2 Rheological properties -- 7.4 Analysis of processing conditions -- 7.4.1 Analysis of thermal stress profile -- 7.4.2 Analysis of thermomechanical stress profile and mixing characteristics -- 7.5 Concluding remarks -- References -- Chapter 8 - Key technological advances and industrialization of continuous flow microwave processing for foods and beverages -- 8.1 Introduction -- 8.2 Continuous flow microwave processing prototypes -- 8.2.1 First generation of continuous flow microwave processing technologies -- 8.2.2 Second generation of continuous flow microwave processing technologies -- 8.2.3 Third generation of continuous flow microwave processing technologies -- 8.3 Intellectual property -- 8.4 Conclusions References -- Chapter 9 - Update on emerging technologies including novel applications: radio frequency -- 9.1 Introduction -- 9.2 Radio frequency disinfestation of agricultural products -- 9.3 Radio frequency pasteurization of food products -- 9.4 Radio frequency pasteurization of food powders -- 9.5 Radio frequency tempering and thawing of frozen foods -- 9.6 Advantages and disadvantages of radio frequency processing -- 9.7 Mathematical modeling -- 9.8 Conclusions -- References -- Chapter 10 - Recent advances in freezing processes: an overview -- 10.1 Introduction -- 10.2 Noninvasive innovative freezing methods -- 10.2.1 Pressure shift freezing and pressure assisted freezing -- 10.2.2 Static electric and magnetic fields -- impact on phase change and freezing -- 10.2.2.1 Interaction between atoms, molecules, and electric field -- 10.2.3 Possible mechanisms -- 10.2.3.1 Magnetic field assisted freezing -- interaction between atoms, molecules, and magnetic field -- 10.2.4 Microwave (MW) and radio frequency (RF) assisted freezing -- 10.3 Ultrasound assisted freezing -- 10.4 Substances regulating freezing process and final product quality -- 10.5 Chilling, superchilling, and supercooling -- 10.5.1 Chilling applied to foods -- 10.5.2 Impact of superchilling of food products quality -- 10.5.3 Alternative supercooling technology supported by external magnetic and electric fields -- 10.6 Conclusions -- References -- Chapter 11 - Cooling of milk on dairy farms: an application of a novel ice encapsulated storage system in New Zealand -- 11.1 Introduction -- 11.2 Background -- 11.2.1 NZ milk cooling regulations -- 11.2.1.1 NZCP1 Version 5 amendment 2 (old milk cooling standards) -- 11.2.1.2 NZCP1 2017 (new milk cooling standards) -- 11.2.2 Electricity Tariffs -- 11.2.3 Milk cooling operations -- 11.2.3.1 Precooling 11.2.3.2 Cooling in storage vat -- 11.3 Options for further cooling of milk -- 11.3.1 Cooling towers -- 11.3.2 Instant chilling -- 11.3.3 Chilled water storage system -- 11.3.3.1 Chilled water storage system installed in Coldstream Downs farm, New Zealand: a case study -- 11.3.4 Ice storage systems -- 11.3.4.1 Ice-on-tube storage system -- 11.3.4.2 Packed bed ice encapsulated -- 11.3.5 Innovative approaches for ice encapsulation -- 11.3.5.1 Packed bed of graphite sphere containing PCM (water) -- 11.3.5.2 Ice slab storage system -- 11.4 Pilot scale ice slab storage system -- 11.4.1 Process description -- 11.4.2 System operation -- 11.4.2.1 Making ice (charging process-night) -- 11.4.2.2 Melting ice (discharging process-milking period) -- 11.4.3 Technical results -- 11.4.4 Cost analysis -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 - Novel drying technologies using electric and electromagnetic fields -- 12.1 Introduction -- 12.2 Microwave and radio frequency drying -- 12.3 Electrohydrodynamic drying -- 12.4 Conclusions and perspectives -- References -- Chapter 13 - Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials -- 13.1 Introduction -- 13.2 Principles of electrostatic spray drying -- 13.3 Applications of electrostatic spray drying -- 13.3.1 Whole milk, skim milk, and infant milk formulae -- 13.3.2 Colostrum and lactoferrin powders -- 13.3.3 Yoghurt powders -- 13.3.4 Oil encapsulation -- 13.4 Conclusions -- References -- Chapter 14 - Dairy encapsulation systems by atomization-based technology -- 14.1 Introduction -- 14.2 Atomization-based technology for encapsulation -- 14.2.1 Spray drying -- 14.2.2 Spray chilling -- 14.2.3 Fluidized bed coating -- 14.3 Dairy ingredients as wall materials for encapsulation -- 14.3.1 Dairy proteins (casein/whey) 14.3.2 Lactose Juliano, Pablo edt Knoerzer, Kai 1976- (DE-588)132295946 edt Sellahewa, Jayantha (DE-588)1274767873 edt Nguyen, Minh H. edt Buckow, Roman 1973- (DE-588)132356058 edt Erscheint auch als Juliano, Pablo Food Engineering Innovations Across the Food Supply Chain San Diego : Elsevier Science & Technology,c2021 Druck-Ausgabe 978-0-12-821292-9 |
spellingShingle | Food engineering innovations across the food supply chain Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1 - Understanding and building resilience in food supply chains -- 1.1 Introduction -- 1.2 The challenges for the supply chains of fresh produce -- 1.3 Quantifying resilience -- 1.4 Methodology -- 1.4.1 The supply chain index -- 1.4.2 Testing resilience empirically -- 1.4.3 Optimizing resilient supply chains -- 1.5 Case study and discussion -- 1.6 Concluding remarks -- References -- Chapter 2 - Sustainable food systems -- 2.1 Introduction -- 2.2 Sustainability of food systems -- 2.2.1 Linear food system issues -- 2.2.2 Definition of sustainable food systems -- 2.2.3 Technoeconomic analysis -- 2.2.4 Life cycle analysis -- 2.3 Features of a sustainable food system -- 2.3.1 Circular economy principles -- 2.3.2 Sustainable agriculture -- 2.3.3 Localized food systems -- 2.3.4 Innovative increased shelf-life products to prevent waste -- 2.3.5 Integrated valorization pathways for food excess and by-products -- 2.4 A "zero-waste" approach for sustainable food systems -- 2.4.1 Transitioning to sustainable food systems -- 2.4.2 System strategies for sustainability -- 2.4.3 Sustainable food processing -- 2.4.4 Sustainable food and beverage initiatives in Australia -- 2.5 The future of sustainable food systems -- Abbreviations -- References -- Chapter 3 - Sustainability of the food supply chain -- energy, water and waste -- 3.1 Introduction -- 3.2 Status of energy conservation -- 3.3 Fresh water demand -- 3.4 Food waste -- 3.5 Life cycle assessment -- 3.6 Process analysis and design -- 3.6.1 Applications to process analysis to energy conservation -- 3.6.2 Applications of process analysis to water conservation -- 3.6.3 Applications to process analysis to waste reduction 3.7 Conclusions and recommendations -- Acknowledgments -- References -- Further reading -- Chapter 4 - Recovery of high-value compounds from food by-products -- 4.1 Introduction -- 4.2 Natural compounds recovered from plant-based by-products -- 4.2.1 Antioxidants -- 4.2.1.1 Vitamin C -- 4.2.1.2 Polyphenols -- 4.2.1.3 Carotenoids -- 4.2.1.4 Vitamin E -- 4.2.1.5 Solanesol -- 4.2.2 Dietary fibers -- 4.2.3 Plant-based proteins -- 4.2.4 Other bioactive compounds -- 4.3 High-value-added compounds from animal-based by-products -- 4.3.1 Bioactive peptides and polysaccharides -- 4.3.2 New trends in recovery of valuable compounds from animal by-products -- 4.3.2.1 New techniques for collagen recovery -- 4.3.2.2 Recovery other proteins from animal by-products -- 4.3.2.3 Recovery valuable compounds from dairy by-products -- 4.4 Antiviral compounds from food by-products -- 4.5 Concluding remarks -- Acknowledgments -- References -- Chapter 5 - Recent developments in fermentation technology: toward the next revolution in food production -- 5.1 Introduction -- 5.2 Fermentation process engineering -- 5.2.1 Introduction -- 5.2.2 Fermentation process design -- 5.2.3 Fermenter design -- 5.2.3.1 Submerged fermenters -- 5.2.3.2 Solid-state fermenters -- 5.3 Industrial food fermentation -- 5.3.1 Advances in industrial vegetable fermentation -- 5.3.2 Advances in other fermentation processes -- 5.4 Recent developments in food fermentation -- 5.4.1 Innovations in traditional or "natural" food fermentation -- 5.4.2 Precision fermentation for production of food products ingredients -- 5.4.3 Fermentation for valorization of food waste -- 5.4.4 Fermentation and the alternative protein trend -- 5.5 Conclusion and future perspectives -- References -- Chapter 6 - Strategies to mitigate protein deficit -- 6.1 Introduction 6.2 Protein demand -- 6.3 Sustainability of alternative proteins sources -- 6.3.1 Plant -- 6.3.2 Meat and fish by products -- 6.3.3 Microbial -- 6.3.4 Insects -- 6.3.5 Algae -- 6.3.6 In vitro meat -- 6.4 Alternative protein extraction techniques -- 6.4.1 Acid-based extraction -- 6.4.2 Alkaline-based extraction -- 6.4.3 Enzyme assisted extraction -- 6.4.4 Ultrasound assisted extraction -- 6.4.5 Pulsed electric field assisted extraction -- 6.4.6 Microwave assisted extraction -- 6.5 Key determinants for the acceptance of alternative proteins -- 6.5.1 Food neophobia -- 6.5.2 Disgust -- 6.5.3 Environmental awareness -- 6.5.4 Health consciousness -- 6.5.5 Risk assessment -- 6.5.6 Personal experiences -- 6.5.7 Familiarity -- 6.5.8 Socio demographic factors -- 6.6 Health considerations -- 6.6.1 Digestibility -- 6.6.2 Cytotoxicity -- 6.6.3 Allergenicity -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 - Key technological advances of extrusion processing -- 7.1 Introduction -- 7.2 Research approach -- 7.3 Analysis of material design properties -- 7.3.1 Reaction properties -- 7.3.2 Rheological properties -- 7.4 Analysis of processing conditions -- 7.4.1 Analysis of thermal stress profile -- 7.4.2 Analysis of thermomechanical stress profile and mixing characteristics -- 7.5 Concluding remarks -- References -- Chapter 8 - Key technological advances and industrialization of continuous flow microwave processing for foods and beverages -- 8.1 Introduction -- 8.2 Continuous flow microwave processing prototypes -- 8.2.1 First generation of continuous flow microwave processing technologies -- 8.2.2 Second generation of continuous flow microwave processing technologies -- 8.2.3 Third generation of continuous flow microwave processing technologies -- 8.3 Intellectual property -- 8.4 Conclusions References -- Chapter 9 - Update on emerging technologies including novel applications: radio frequency -- 9.1 Introduction -- 9.2 Radio frequency disinfestation of agricultural products -- 9.3 Radio frequency pasteurization of food products -- 9.4 Radio frequency pasteurization of food powders -- 9.5 Radio frequency tempering and thawing of frozen foods -- 9.6 Advantages and disadvantages of radio frequency processing -- 9.7 Mathematical modeling -- 9.8 Conclusions -- References -- Chapter 10 - Recent advances in freezing processes: an overview -- 10.1 Introduction -- 10.2 Noninvasive innovative freezing methods -- 10.2.1 Pressure shift freezing and pressure assisted freezing -- 10.2.2 Static electric and magnetic fields -- impact on phase change and freezing -- 10.2.2.1 Interaction between atoms, molecules, and electric field -- 10.2.3 Possible mechanisms -- 10.2.3.1 Magnetic field assisted freezing -- interaction between atoms, molecules, and magnetic field -- 10.2.4 Microwave (MW) and radio frequency (RF) assisted freezing -- 10.3 Ultrasound assisted freezing -- 10.4 Substances regulating freezing process and final product quality -- 10.5 Chilling, superchilling, and supercooling -- 10.5.1 Chilling applied to foods -- 10.5.2 Impact of superchilling of food products quality -- 10.5.3 Alternative supercooling technology supported by external magnetic and electric fields -- 10.6 Conclusions -- References -- Chapter 11 - Cooling of milk on dairy farms: an application of a novel ice encapsulated storage system in New Zealand -- 11.1 Introduction -- 11.2 Background -- 11.2.1 NZ milk cooling regulations -- 11.2.1.1 NZCP1 Version 5 amendment 2 (old milk cooling standards) -- 11.2.1.2 NZCP1 2017 (new milk cooling standards) -- 11.2.2 Electricity Tariffs -- 11.2.3 Milk cooling operations -- 11.2.3.1 Precooling 11.2.3.2 Cooling in storage vat -- 11.3 Options for further cooling of milk -- 11.3.1 Cooling towers -- 11.3.2 Instant chilling -- 11.3.3 Chilled water storage system -- 11.3.3.1 Chilled water storage system installed in Coldstream Downs farm, New Zealand: a case study -- 11.3.4 Ice storage systems -- 11.3.4.1 Ice-on-tube storage system -- 11.3.4.2 Packed bed ice encapsulated -- 11.3.5 Innovative approaches for ice encapsulation -- 11.3.5.1 Packed bed of graphite sphere containing PCM (water) -- 11.3.5.2 Ice slab storage system -- 11.4 Pilot scale ice slab storage system -- 11.4.1 Process description -- 11.4.2 System operation -- 11.4.2.1 Making ice (charging process-night) -- 11.4.2.2 Melting ice (discharging process-milking period) -- 11.4.3 Technical results -- 11.4.4 Cost analysis -- 11.5 Conclusions -- Acknowledgment -- References -- Chapter 12 - Novel drying technologies using electric and electromagnetic fields -- 12.1 Introduction -- 12.2 Microwave and radio frequency drying -- 12.3 Electrohydrodynamic drying -- 12.4 Conclusions and perspectives -- References -- Chapter 13 - Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials -- 13.1 Introduction -- 13.2 Principles of electrostatic spray drying -- 13.3 Applications of electrostatic spray drying -- 13.3.1 Whole milk, skim milk, and infant milk formulae -- 13.3.2 Colostrum and lactoferrin powders -- 13.3.3 Yoghurt powders -- 13.3.4 Oil encapsulation -- 13.4 Conclusions -- References -- Chapter 14 - Dairy encapsulation systems by atomization-based technology -- 14.1 Introduction -- 14.2 Atomization-based technology for encapsulation -- 14.2.1 Spray drying -- 14.2.2 Spray chilling -- 14.2.3 Fluidized bed coating -- 14.3 Dairy ingredients as wall materials for encapsulation -- 14.3.1 Dairy proteins (casein/whey) 14.3.2 Lactose |
title | Food engineering innovations across the food supply chain |
title_auth | Food engineering innovations across the food supply chain |
title_exact_search | Food engineering innovations across the food supply chain |
title_exact_search_txtP | Food engineering innovations across the food supply chain |
title_full | Food engineering innovations across the food supply chain edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow |
title_fullStr | Food engineering innovations across the food supply chain edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow |
title_full_unstemmed | Food engineering innovations across the food supply chain edited by Pablo Juliano, Kai Knoerzer, Jay Sellahewa, Minh H. Nguyen, Roman Buckow |
title_short | Food engineering innovations across the food supply chain |
title_sort | food engineering innovations across the food supply chain |
work_keys_str_mv | AT julianopablo foodengineeringinnovationsacrossthefoodsupplychain AT knoerzerkai foodengineeringinnovationsacrossthefoodsupplychain AT sellahewajayantha foodengineeringinnovationsacrossthefoodsupplychain AT nguyenminhh foodengineeringinnovationsacrossthefoodsupplychain AT buckowroman foodengineeringinnovationsacrossthefoodsupplychain |