Power system protection: fundamentals and applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Incorporated
2022
|
Schriftenreihe: | IEEE Press Series on Power and Energy Systems Ser
|
Schlagworte: | |
Online-Zugang: | FHI01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiii, 530 Seiten) |
ISBN: | 9781119847397 9781119847380 9781119847373 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221407 | ||
003 | DE-604 | ||
005 | 20230419 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119847397 |9 978-1-119-84739-7 | ||
020 | |a 9781119847380 |9 978-1-119-84738-0 | ||
020 | |a 9781119847373 |9 9781119847373 | ||
035 | |a (ZDB-30-PQE)EBC6821603 | ||
035 | |a (ZDB-30-PAD)EBC6821603 | ||
035 | |a (ZDB-89-EBL)EBL6821603 | ||
035 | |a (OCoLC)1288217188 | ||
035 | |a (DE-599)BVBBV048221407 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-573 | ||
082 | 0 | |a 621.317 | |
100 | 1 | |a Ciufo, John |d 1953- |e Verfasser |0 (DE-588)1252927401 |4 aut | |
245 | 1 | 0 | |a Power system protection |b fundamentals and applications |c John Ciufo, Aaron Cooperberg |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (xxiii, 530 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press Series on Power and Energy Systems Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers | |
505 | 8 | |a 3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays | |
505 | 8 | |a 4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation | |
505 | 8 | |a 5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area | |
505 | 8 | |a 6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current | |
505 | 8 | |a 8.3.3.1 Substation Grounding Requirements | |
650 | 0 | 7 | |a Schutz |g Elektrotechnik |0 (DE-588)4128586-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |D s |
689 | 0 | 1 | |a Schutz |g Elektrotechnik |0 (DE-588)4128586-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cooperberg, Aaron |d 1952- |e Verfasser |0 (DE-588)1252930216 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-84736-6 |
912 | |a ZDB-35-WIC |a ZDB-30-PQE |a ZDB-35-WEL | ||
940 | 1 | |q TUM_PDA_PQE | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033602144 | ||
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9640321 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002295234560 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ciufo, John 1953- Cooperberg, Aaron 1952- |
author_GND | (DE-588)1252927401 (DE-588)1252930216 |
author_facet | Ciufo, John 1953- Cooperberg, Aaron 1952- |
author_role | aut aut |
author_sort | Ciufo, John 1953- |
author_variant | j c jc a c ac |
building | Verbundindex |
bvnumber | BV048221407 |
collection | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers 3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays 4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation 5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area 6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current 8.3.3.1 Substation Grounding Requirements |
ctrlnum | (ZDB-30-PQE)EBC6821603 (ZDB-30-PAD)EBC6821603 (ZDB-89-EBL)EBL6821603 (OCoLC)1288217188 (DE-599)BVBBV048221407 |
dewey-full | 621.317 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.317 |
dewey-search | 621.317 |
dewey-sort | 3621.317 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11401nmm a2200553zc 4500</leader><controlfield tag="001">BV048221407</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230419 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119847397</subfield><subfield code="9">978-1-119-84739-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119847380</subfield><subfield code="9">978-1-119-84738-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119847373</subfield><subfield code="9">9781119847373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6821603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6821603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6821603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1288217188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.317</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciufo, John</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252927401</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Power system protection</subfield><subfield code="b">fundamentals and applications</subfield><subfield code="c">John Ciufo, Aaron Cooperberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 530 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press Series on Power and Energy Systems Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.3.1 Substation Grounding Requirements</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schutz</subfield><subfield code="g">Elektrotechnik</subfield><subfield code="0">(DE-588)4128586-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schutz</subfield><subfield code="g">Elektrotechnik</subfield><subfield code="0">(DE-588)4128586-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cooperberg, Aaron</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252930216</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-84736-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602144</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9640321</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221407 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781119847397 9781119847380 9781119847373 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602144 |
oclc_num | 1288217188 |
open_access_boolean | |
owner | DE-83 DE-573 |
owner_facet | DE-83 DE-573 |
physical | 1 Online-Ressource (xxiii, 530 Seiten) |
psigel | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL TUM_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | IEEE Press Series on Power and Energy Systems Ser |
spelling | Ciufo, John 1953- Verfasser (DE-588)1252927401 aut Power system protection fundamentals and applications John Ciufo, Aaron Cooperberg Hoboken, NJ John Wiley & Sons, Incorporated 2022 ©2022 1 Online-Ressource (xxiii, 530 Seiten) txt rdacontent c rdamedia cr rdacarrier IEEE Press Series on Power and Energy Systems Ser Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers 3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays 4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation 5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area 6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current 8.3.3.1 Substation Grounding Requirements Schutz Elektrotechnik (DE-588)4128586-4 gnd rswk-swf Elektrisches Energiesystem (DE-588)4134933-7 gnd rswk-swf Elektrisches Energiesystem (DE-588)4134933-7 s Schutz Elektrotechnik (DE-588)4128586-4 s DE-604 Cooperberg, Aaron 1952- Verfasser (DE-588)1252930216 aut Erscheint auch als Druck-Ausgabe 978-1-119-84736-6 |
spellingShingle | Ciufo, John 1953- Cooperberg, Aaron 1952- Power system protection fundamentals and applications Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 What Is Power System Protection, Why Is It Required and Some Basics? -- 1.1 What Is Power System Protection? -- 1.2 Why Is Power System Protections Required? -- 1.2.1 Minimize Primary Equipment Damage -- 1.2.2 Provide Continuity of Service by Minimizing Outage Time and Service -- 1.2.3 Promote Safety -- 1.2.4 Maintaining Power System Integrity -- 1.3 Some Basic Protection System Terms and Information -- 1.3.1 Relay -- 1.3.2 Protective Relays -- 1.3.3 Protective Relaying -- 1.3.4 Protection Engineering -- 1.3.5 Protection System Objectives -- 1.3.6 Protection System Characteristics -- 1.3.6.1 Selectivity -- 1.3.6.2 Sensitivity -- 1.3.6.3 Speed -- 1.3.7 Protection System Reliability -- 1.3.7.1 Dependability -- 1.3.7.2 Security -- 1.3.8 Protection System Backup -- 1.3.8.1 Remote Backup -- 1.3.8.2 Local Backup -- 1.3.9 Protection System Redundancy -- References -- Chapter 2 Basic Power System Protection Components -- 2.1 General Description -- 2.2 Power System Protection Components -- 2.2.1 Instrument Transformers -- 2.2.2 Protective Relays -- 2.2.3 Auxiliary Logic -- 2.2.3.1 Auxiliary Relays -- 2.2.3.2 Application of Auxiliary Relays -- 2.2.4 Panels and Racks -- 2.2.5 Battery Systems Used for Protections -- 2.2.6 Telecommunications -- 2.3 Physical Implementation -- 2.3.1 Relay and Control Building -- 2.3.2 Location of Instrument Transformers -- 2.3.3 Terminations -- 2.3.4 Protection Isolation Devices -- 2.3.5 Wiring and Cable (Control Wiring) -- 2.4 Power System Isolation Devices and Control Interfaces -- 2.4.1 Isolation Devices -- 2.4.2 Control Interfaces -- 2.5 Redundancy Arrangements -- 2.5.1 Instrument Transformers -- 2.5.2 Dual Breaker Trip Coils -- Chapter 3 AC Signal Sources -- 3.1 Introduction -- 3.2 Current Transformers 3.2.1 Current Transformer Secondary Burden -- 3.2.2 Current Transformer Types -- 3.2.2.1 Bar‐Type CT -- 3.2.2.2 Bushing‐Type CT -- 3.2.2.3 Window‐Type CT -- 3.2.2.4 Wound‐Type CT -- 3.2.3 Current Transformer Polarity -- 3.2.4 Current Transformer Ratios -- 3.2.5 Auxiliary Transformers -- 3.2.6 Current Transformer Accuracy Classifications -- 3.2.7 General Characteristics of CTs -- 3.2.8 Response of CTs Under Transient Power System Conditions -- 3.2.8.1 The Effect of CT Saturation on Protections -- 3.2.8.2 Causes of CT Saturation -- 3.2.8.3 Flux Remanence in the CT Core -- 3.2.8.4 Use of Air Gaps to Reduce Remanence -- 3.2.8.5 Methods to Ensure Correct CT Performance -- 3.2.9 General Requirements for CT Sizing -- 3.2.9.1 Maximum Expected Load Current -- 3.2.9.2 Maximum Symmetrical Fault Current -- 3.2.9.3 Maximum CT Burden -- 3.2.9.4 Calculate the Steady‐state CT Secondary Voltage (VS) -- 3.2.9.5 CT Application Example -- 3.3 Voltage Sources -- 3.3.1 Magnetic Voltage Transformers -- 3.3.1.1 Magnetic Voltage Transformers Equivalent Circuit -- 3.3.1.2 Protection of VTs -- 3.3.2 Capacitive Voltage Transformer (CVT) -- 3.3.3 Bushing Potential Devices -- References -- Chapter 4 Basic Types of Protection Relays and Their Operation -- 4.1 General -- 4.2 Fundamental Principles and Characteristics -- 4.2.1 Non‐directional Induction Disk Overcurrent -- 4.2.2 Induction Principle of Operation -- 4.3 Overcurrent -- 4.3.1 Induction Disc Time‐Overcurrent -- 4.3.2 Inverse Time‐Overcurrent Relay -- 4.3.2.1 Inverse Time‐Overcurrent Characteristics -- 4.3.2.2 Basic Pickup Current Setting -- 4.3.2.3 Time Dial Adjustment -- 4.3.2.4 Setting Adjustments for an Inverse Time‐Overcurrent Relay -- 4.3.3 Time Coordination with Overcurrent Relays -- 4.3.3.1 Coordination Time for Electromechanical Relays -- 4.3.3.2 Coordination Time for Digital Relays 4.3.4 Directional Overcurrent Relays -- 4.3.4.1 Method of Directioning -- 4.3.4.2 The Watt‐Hour Structure -- 4.3.4.3 The Induction Cup Structure -- 4.3.4.4 Relay Phase Relationship of Voltage and Current in a Directional Relay -- 4.3.4.5 Typical Application of Directional Phase Overcurrent Relays -- 4.3.4.6 Typical Application of Ground Directional Overcurrent Relays -- 4.4 Differential -- 4.4.1 General -- 4.4.2 Differential Principle Used in Bus Protection -- 4.4.2.1 Fundamental Principle of Operation -- 4.4.2.2 Security for Out‐of‐Zone Faults -- 4.4.2.3 Low Impedance Differential Protection -- 4.4.2.4 High Impedance Differential Protection -- 4.4.3 Differential Principle Used in Transformer Protection -- 4.4.3.1 Percent Differential Relay -- 4.5 Distance -- 4.5.1 General -- 4.5.2 Need for Distance Protection -- 4.5.3 Impedance Relay Principle of Operation -- 4.5.4 MHO Relay Principle of Operation -- 4.5.4.1 Offset‐MHO Relay Principle of Operation -- 4.5.4.2 Reactance - Type Distance Relay -- 4.5.4.3 Blinder‐Type Distance Relay -- Reference -- Chapter 5 Protection Information Representation, Nomenclature, and Jargon -- 5.1 General -- 5.2 Protection Drawing Types -- 5.2.1 Single‐line Diagram -- 5.2.2 Three‐Phase Diagram (AC EWD) -- 5.2.2.1 Transcription of Information from AC EWD to Single‐Line Diagrams -- 5.2.3 DC Elementary Wiring Diagrams - Also Known as DC Control Diagrams -- 5.2.4 Electrical Arrangement (EA) -- 5.2.5 Connection Wiring Diagrams (CWD) -- 5.2.6 Protection Logic Diagrams -- 5.2.7 Protection Settings Records and Support Information -- 5.2.8 Protection Relay Threshold/Pickup Settings -- 5.2.9 Relay Configuration and Settings File -- 5.3 Nomenclature and Device Numbers -- 5.3.1 Commonly Used Protection Device Numbers -- 5.3.2 Prefix and Suffix Meaning -- 5.3.3 Interlocks -- 5.4 Classification of Relays -- 5.4.1 Methods of Operation 5.4.2 Response Characteristics -- 5.5 Protection Jargon -- 5.5.1 Relay Operation and Performance -- 5.5.2 Protection System Operation and Performance -- Reference -- Chapter 6 Per‐Unit System and Fault Calculations -- 6.1 General -- 6.2 Per‐Unit -- 6.2.1 Base Quantity Equations -- 6.2.1.1 Establish the Base Voltage (kV) and Power (MVA) -- 6.2.1.2 From Base Voltage and Power, Calculate the Base Current and Impedance -- 6.2.2 Per‐Unit General -- 6.2.3 Per‐Unit Impedance -- 6.2.4 Conversion of PU Values To Different Bases -- 6.2.5 A Summary for Solving a Problem Using Per Unit -- 6.2.6 Example -- 6.3 Fundamental Need for Fault Information -- 6.3.1 Types of Faults -- 6.3.1.1 Balanced vs. Unbalanced -- 6.4 Symmetrical Components -- 6.4.1 Theory of Symmetrical Components -- 6.4.1.1 Positive Sequence Phasors -- 6.4.1.2 Negative Sequence Phasors -- 6.4.1.3 Zero‐Sequence Phasors -- 6.4.2 Phase Quantities In Terms of Sequence Components -- 6.5 Sequence Impedances of Power Apparatus -- 6.5.1 Synchronous Machinery -- 6.5.2 Transmission Lines -- 6.5.3 Transformers -- 6.5.3.1 Equivalent Circuit: Positive and Negative Sequence Impedances -- 6.5.3.2 Zero‐Sequence Circuit and Impedance -- 6.5.3.3 Zero‐sequence Impedance with Neutral Grounding Impedance -- 6.5.3.4 Banks of Three, Single‐Phase Transformers -- 6.5.3.5 Typically Used Transformers and Models -- 6.6 Balanced Fault Analysis -- 6.6.1 Balanced Fault Calculations -- 6.6.2 Simplifying Assumptions -- 6.7 Sequence Networks -- 6.7.1 Sequence Network Interconnections -- 6.7.1.1 Principle of Interconnections -- 6.8 Summary of Unbalance Fault Calculations -- 6.8.1 Positive Sequence Diagram -- 6.8.2 Negative Sequence Diagram: -- 6.8.3 Zero‐Sequence Diagram -- 6.8.4 Conduct the Fault Study -- 6.9 High‐Level Summary of the Fault Calculation Process -- 6.9.1 Develop a Single‐Line Diagram of the Studied Area 6.9.2 Determine the Studied Power System Element Impedances -- 6.9.3 Develop Sequence Impedance Models -- 6.9.4 Determine the Fault Types and System Conditions -- 6.9.5 Conduct the Fault Studies and Determine Relay Quantities -- 6.10 Useful Fault Calculation Formulas/Methods -- 6.10.1 Conversion from Short Circuit Values to System Impedances -- 6.11 Fault Calculation Examples -- 6.11.1 Three‐Phase Fault Example -- 6.11.2 Line‐to‐Ground Fault Example -- 6.11.2.1 Positive Sequence -- 6.11.2.2 Negative Sequence Network -- 6.11.2.3 Zero‐Sequence Network -- 6.11.2.4 Reduction in the Positive Sequence Network -- 6.11.2.5 Reduction in the Zero‐Sequence Network -- 6.11.2.6 Calculate the L‐G Fault -- References -- Chapter 7 Protection Zones -- 7.1 Protection Zones General -- 7.2 Zones Defined -- 7.3 Zone Overlap Around Breakers -- 7.4 Protection Zoning at Stations -- 7.4.1 HV Switching Stations -- 7.4.2 LV Distribution Stations -- 7.4.2.1 The Transformer Zone -- 7.4.2.2 The Bus Zone -- 7.4.2.3 The Distribution Feeder Zone -- 7.5 Protection Zones in General -- 7.5.1 Lines -- 7.5.2 Transformers -- 7.5.3 Generators -- 7.5.4 Protection Zones Overlapping Between Stations -- 7.6 Backup Protection -- 7.6.1 Remote Backup -- 7.6.2 Local Backup -- 7.7 CT Configuration and Protection Trip Zones -- 7.7.1 CTs Connected in Wye -- 7.7.2 CTs Connected in Delta -- 7.8 Where Protections Zones do not Overlap Around Breakers -- 7.8.1 Blind Spot Created by Non‐Overlap of Protections Zones around Breakers -- 7.9 Lines Terminating Directly on Buses at a HV Switching Station -- Chapter 8 Transformer Protection -- 8.1 Introduction -- 8.2 General Principles -- 8.3 Differential Protection Power Transformers -- 8.3.1 Factors Affecting Transformer Differential Protection -- 8.3.2 Phase Shifting from Primary to Secondary -- 8.3.3 The Flow of Zero‐Sequence Current 8.3.3.1 Substation Grounding Requirements Schutz Elektrotechnik (DE-588)4128586-4 gnd Elektrisches Energiesystem (DE-588)4134933-7 gnd |
subject_GND | (DE-588)4128586-4 (DE-588)4134933-7 |
title | Power system protection fundamentals and applications |
title_auth | Power system protection fundamentals and applications |
title_exact_search | Power system protection fundamentals and applications |
title_exact_search_txtP | Power system protection fundamentals and applications |
title_full | Power system protection fundamentals and applications John Ciufo, Aaron Cooperberg |
title_fullStr | Power system protection fundamentals and applications John Ciufo, Aaron Cooperberg |
title_full_unstemmed | Power system protection fundamentals and applications John Ciufo, Aaron Cooperberg |
title_short | Power system protection |
title_sort | power system protection fundamentals and applications |
title_sub | fundamentals and applications |
topic | Schutz Elektrotechnik (DE-588)4128586-4 gnd Elektrisches Energiesystem (DE-588)4134933-7 gnd |
topic_facet | Schutz Elektrotechnik Elektrisches Energiesystem |
work_keys_str_mv | AT ciufojohn powersystemprotectionfundamentalsandapplications AT cooperbergaaron powersystemprotectionfundamentalsandapplications |