Optimal coordination of power protective devices with illustrative examples:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Incorporated
2022
|
Schriftenreihe: | IEEE Press Series on Power and Energy Systems Ser
|
Schlagworte: | |
Online-Zugang: | FHI01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxx, 491 Seiten) |
ISBN: | 9781119794929 9781119794905 9781119794912 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221327 | ||
003 | DE-604 | ||
005 | 20240221 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119794929 |9 978-1-119-79492-9 | ||
020 | |a 9781119794905 |9 978-1-119-79490-5 | ||
020 | |a 9781119794912 |9 9781119794912 | ||
035 | |a (ZDB-30-PQE)EBC6817979 | ||
035 | |a (ZDB-30-PAD)EBC6817979 | ||
035 | |a (ZDB-89-EBL)EBL6817979 | ||
035 | |a (OCoLC)1288214140 | ||
035 | |a (DE-599)BVBBV048221327 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-573 | ||
100 | 1 | |a Al-Roomi, Ali R. |4 aut | |
245 | 1 | 0 | |a Optimal coordination of power protective devices with illustrative examples |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (xxx, 491 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press Series on Power and Energy Systems Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- About The Companion Website -- Introduction -- Chapter 1 Fundamental Steps in Optimization Algorithms -- 1.1 Overview -- 1.1.1 Design Variables -- 1.1.2 Design Parameters -- 1.1.3 Design Function -- 1.1.4 Objective Function(s) -- 1.1.5 Design Constraints -- 1.1.5.1 Mathematical Constraints -- 1.1.5.2 Inequality Constraints -- 1.1.5.3 Side Constraints -- 1.1.6 General Principles -- 1.1.6.1 Feasible Space vs. Search Space -- 1.1.6.2 Global Optimum vs. Local Optimum -- 1.1.6.3 Types of Problem -- 1.1.7 Standard Format -- 1.1.8 Constraint‐Handling Techniques -- 1.1.8.1 Random Search Method -- 1.1.8.2 Constant Penalty Function -- 1.1.8.3 Binary Static Penalty Function -- 1.1.8.4 Superiority of Feasible Points (SFPs) - Type I -- 1.1.8.5 Superiority of Feasible Points (SFP) - Type II -- 1.1.8.6 Eclectic Evolutionary Algorithm -- 1.1.8.7 Typical Dynamic Penalty Function -- 1.1.8.8 Exponential Dynamic Penalty Function -- 1.1.8.9 Adaptive Multiplication Penalty Function -- 1.1.8.10 Self‐Adaptive Penalty Function (SAPF) -- 1.1.9 Performance Criteria Used to Evaluate Algorithms -- 1.1.10 Types of Optimization Techniques -- 1.2 Classical Optimization Algorithms -- 1.2.1 Linear Programming -- 1.2.1.1 Historical Time‐Line -- 1.2.1.2 Mathematical Formulation of LP Problems -- 1.2.1.3 Linear Programming Solvers -- 1.2.2 Global‐Local Optimization Strategy -- 1.2.2.1 Multi‐Start Linear Programming -- 1.2.2.2 Hybridizing LP with Meta‐Heuristic Optimization Algorithms as a Fine‐Tuning Unit -- 1.3 Meta‐Heuristic Algorithms -- 1.3.1 Biogeography‐Based Optimization -- 1.3.1.1 Migration Stage -- 1.3.1.2 Mutation Stage -- 1.3.1.3 Clear Duplication Stage -- 1.3.1.4 Elitism Stage -- 1.3.1.5 The Overall BBO Algorithm -- 1.3.2 Differential Evolution | |
505 | 8 | |a 1.4 Hybrid Optimization Algorithms -- 1.4.1 BBO‐LP -- 1.4.2 BBO/DE -- Problems -- Written Exercises -- Computer Exercises -- Chapter 2 Fundamentals of Power System Protection -- 2.1 Faults Classification -- 2.2 Protection System -- 2.3 Zones of Protection -- 2.4 Primary and Backup Protection -- 2.5 Performance and Design Criteria -- 2.5.1 Reliability -- 2.5.1.1 Dependability -- 2.5.1.2 Security -- 2.5.2 Sensitivity -- 2.5.3 Speed -- 2.5.4 Selectivity -- 2.5.5 Performance versus Economics -- 2.5.6 Adequateness -- 2.5.7 Simplicity -- 2.6 Overcurrent Protective Devices -- 2.6.1 Fuses -- 2.6.2 Bimetallic Relays -- 2.6.3 Overcurrent Protective Relays -- 2.6.4 Instantaneous OCR (IOCR) -- 2.6.5 Definite Time OCR (DTOCR) -- 2.6.6 Inverse Time OCR (ITOCR) -- 2.6.7 Mixed Characteristic Curves -- 2.6.7.1 Definite‐Time Plus Instantaneous -- 2.6.7.2 Inverse‐Time Plus Instantaneous -- 2.6.7.3 Inverse‐Time Plus Definite‐Time Plus Instantaneous -- 2.6.7.4 Inverse‐Time Plus Definite‐Time -- 2.6.7.5 Inverse Definite Minimum Time (IDMT) -- Problems -- Written Exercises -- Computer Exercises -- Chapter 3 Mathematical Modeling of Inverse‐Time Overcurrent Relay Characteristics -- 3.1 Computer Representation of Inverse‐Time Overcurrent Relay Characteristics -- 3.1.1 Direct Data Storage -- 3.1.2 Curve Fitting Formulas -- 3.1.2.1 Polynomial Equations -- 3.1.2.2 Exponential Equations -- 3.1.2.3 Artificial Intelligence -- 3.1.3 Special Models -- 3.1.3.1 RI‐Type Characteristic -- 3.1.3.2 RD‐Type Characteristic -- 3.1.3.3 FR Short Time Inverse -- 3.1.3.4 UK Rectifier Protection -- 3.1.3.5 BNP‐Type Characteristic -- 3.1.3.6 Standard CO Series Characteristics -- 3.1.3.7 IAC and ANSI Special Equations -- 3.1.4 User‐Defined Curves -- 3.2 Dealing with All the Standard Characteristic Curves Together -- 3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting | |
505 | 8 | |a 3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable -- 3.2.2.1 Fixed Divisor -- 3.2.2.2 Linear Interpolation -- 3.2.3 General Guidelines Before Conducting Researches and Studies -- Problems -- Written Exercises -- Computer Exercises -- Chapter 4 Upper Limit of Relay Operating Time -- 4.1 Do We Need to Define Tmax? -- 4.2 How to Define Tmax? -- 4.2.1 Thermal Equations -- 4.2.1.1 Thermal Overload Protection for 3 ϕ Overhead Lines and Cables -- 4.2.1.2 Thermal Overload Protection for Motors -- 4.2.1.3 Thermal Overload Protection for Transformers -- 4.2.2 Stability Analysis -- Problems -- Written Exercises -- Computer Exercises -- Chapter 5 Directional Overcurrent Relays and the Importance of Relay Coordination -- 5.1 Relay Grading in Radial Systems -- 5.1.1 Time Grading -- 5.1.2 Current Grading -- 5.1.3 Inverse‐Time Grading -- 5.2 Directional Overcurrent Relays -- 5.3 Coordination of DOCRs -- 5.4 Is the Coordination of DOCRs an Iterative Problem? -- 5.5 Minimum Break‐Point Set -- 5.6 Summary -- Problems -- Written Exercises -- Computer Exercises -- Chapter 6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays -- 6.1 Constructing Power Network -- 6.2 Power Flow Analysis -- 6.2.1 Per‐Unit System and Three‐to‐One‐Phase Conversion -- 6.2.2 Power Flow Solvers -- 6.2.3 How to Apply the Newton-Raphson Method -- 6.2.4 Sparsity Effect -- 6.3 P/B Pairs Identification -- 6.3.1 Inspection Method -- 6.3.2 Graph Theory Methods -- 6.3.3 Special Software -- 6.4 Short‐Circuit Analysis -- 6.4.1 Short‐Circuit Calculations -- 6.4.2 Electric Power Engineering Software Tools -- 6.4.2.1 Minimum Short‐Circuit Current -- 6.4.2.2 Maximum Short‐Circuit Current -- 6.4.3 Most Popular Standards -- 6.4.3.1 ANSI/IEEE Standards C37 & -- UL 489 -- 6.4.3.2 IEC 61363 Standard -- 6.4.3.3 IEC 60909 Standard | |
505 | 8 | |a 6.5 Applying Optimization Techniques -- Problems -- Written Exercises -- Computer Exercises -- Chapter 7 Optimal Coordination of Inverse‐Time DOCRs with Unified TCCC -- 7.1 Mathematical Problem Formulation -- 7.1.1 Objective Function -- 7.1.1.1 Other Possible Objective Functions -- 7.1.2 Inequality Constraints on Relay Operating Times -- 7.1.3 Side Constraints on Relay Time Multiplier Settings -- 7.1.4 Side Constraints on Relay Plug Settings -- 7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs -- 7.1.5.1 Transient Selectivity Constraint -- 7.1.6 Standard Optimization Model -- 7.2 Optimal Coordination of DOCRs Using Meta‐Heuristic Optimization Algorithms -- 7.2.1 Algorithm Implementation -- 7.2.2 Constraint‐Handling Techniques -- 7.2.3 Solving the Infeasibility Condition -- 7.3 Results Tester -- Problems -- Written Exercises -- Computer Exercises -- Chapter 8 Incorporating LP and Hybridizing It with Meta‐heuristic Algorithms -- 8.1 Model Linearization -- 8.1.1 Classical Linearization Approach -- 8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings -- 8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings -- 8.1.2 Transformation‐Based Linearization Approach -- 8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings -- 8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings -- 8.2 Multi‐start Linear Programming -- 8.3 Hybridizing Linear Programming with Population‐Based Meta‐heuristic Optimization Algorithms -- 8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS -- 8.3.2 Transformation‐Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS -- 8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS -- Problems -- Written Exercises -- Computer Exercises | |
505 | 8 | |a Chapter 9 Optimal Coordination of DOCRs With OCRs and Fuses -- 9.1 Simple Networks -- 9.1.1 Protecting Radial Networks by Just OCRs -- 9.1.2 Protecting Double‐Line Networks by OCRs and DOCRs -- 9.2 Little Harder Networks -- 9.2.1 Combination of OCRs and DOCRs -- 9.2.2 Combination of Fuses, OCRs, and DOCRs -- 9.3 Complex Networks -- Problems -- Written Exercises -- Computer Exercises -- Chapter 10 Optimal Coordination with Considering Multiple Characteristic Curves -- 10.1 Introduction -- 10.2 Optimal Coordination of DOCRs with Multiple TCCCs -- 10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs -- 10.4 Inherent Weaknesses of the Multi‐TCCCs Approach -- Problems -- Written Exercises -- Computer Exercises -- Chapter 11 Optimal Coordination with Considering the Best TCCC -- 11.1 Introduction -- 11.2 Possible Structures of the Optimizer -- 11.3 Technical Issue -- Problems -- Written Exercises -- Computer Exercises -- Chapter 12 Considering the Actual Settings of Different Relay Technologies in the Same Network -- 12.1 Introduction -- 12.2 Mathematical Formulation -- 12.2.1 Objective Function -- 12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs -- 12.2.3 Inequality Constraints on Relay Operating Times -- 12.2.4 Side Constraints on Relay Time Multiplier Settings -- 12.2.5 Side Constraints on Relay Plug Settings -- 12.3 Biogeography‐Based Optimization Algorithm -- 12.3.1 Clear Duplication Stage -- 12.3.2 Avoiding Facing Infeasible Selectivity Constraints -- 12.3.2.1 Linear Programming Stage -- 12.3.3 Linking PSiyi and TMSiyi with yi -- 12.4 Further Discussion -- Problems -- Written Exercises -- Computer Exercises -- Chapter 13 Considering Double Primary Relay Strategy -- 13.1 Introduction -- 13.2 Mathematical Formulation -- 13.2.1 Objective Function -- 13.2.2 Selectivity Constraint | |
505 | 8 | |a 13.2.3 Inequality Constraints on Relay Operating Times | |
650 | 0 | 7 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schutz |g Elektrotechnik |0 (DE-588)4128586-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |D s |
689 | 0 | 1 | |a Schutz |g Elektrotechnik |0 (DE-588)4128586-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-79485-1 |
912 | |a ZDB-35-WIC |a ZDB-30-PQE |a ZDB-35-WEL | ||
940 | 1 | |q TUM_PDA_PQE | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033602064 | ||
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9635025 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002236514304 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Al-Roomi, Ali R. |
author_facet | Al-Roomi, Ali R. |
author_role | aut |
author_sort | Al-Roomi, Ali R. |
author_variant | a r a r ara arar |
building | Verbundindex |
bvnumber | BV048221327 |
collection | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- About The Companion Website -- Introduction -- Chapter 1 Fundamental Steps in Optimization Algorithms -- 1.1 Overview -- 1.1.1 Design Variables -- 1.1.2 Design Parameters -- 1.1.3 Design Function -- 1.1.4 Objective Function(s) -- 1.1.5 Design Constraints -- 1.1.5.1 Mathematical Constraints -- 1.1.5.2 Inequality Constraints -- 1.1.5.3 Side Constraints -- 1.1.6 General Principles -- 1.1.6.1 Feasible Space vs. Search Space -- 1.1.6.2 Global Optimum vs. Local Optimum -- 1.1.6.3 Types of Problem -- 1.1.7 Standard Format -- 1.1.8 Constraint‐Handling Techniques -- 1.1.8.1 Random Search Method -- 1.1.8.2 Constant Penalty Function -- 1.1.8.3 Binary Static Penalty Function -- 1.1.8.4 Superiority of Feasible Points (SFPs) - Type I -- 1.1.8.5 Superiority of Feasible Points (SFP) - Type II -- 1.1.8.6 Eclectic Evolutionary Algorithm -- 1.1.8.7 Typical Dynamic Penalty Function -- 1.1.8.8 Exponential Dynamic Penalty Function -- 1.1.8.9 Adaptive Multiplication Penalty Function -- 1.1.8.10 Self‐Adaptive Penalty Function (SAPF) -- 1.1.9 Performance Criteria Used to Evaluate Algorithms -- 1.1.10 Types of Optimization Techniques -- 1.2 Classical Optimization Algorithms -- 1.2.1 Linear Programming -- 1.2.1.1 Historical Time‐Line -- 1.2.1.2 Mathematical Formulation of LP Problems -- 1.2.1.3 Linear Programming Solvers -- 1.2.2 Global‐Local Optimization Strategy -- 1.2.2.1 Multi‐Start Linear Programming -- 1.2.2.2 Hybridizing LP with Meta‐Heuristic Optimization Algorithms as a Fine‐Tuning Unit -- 1.3 Meta‐Heuristic Algorithms -- 1.3.1 Biogeography‐Based Optimization -- 1.3.1.1 Migration Stage -- 1.3.1.2 Mutation Stage -- 1.3.1.3 Clear Duplication Stage -- 1.3.1.4 Elitism Stage -- 1.3.1.5 The Overall BBO Algorithm -- 1.3.2 Differential Evolution 1.4 Hybrid Optimization Algorithms -- 1.4.1 BBO‐LP -- 1.4.2 BBO/DE -- Problems -- Written Exercises -- Computer Exercises -- Chapter 2 Fundamentals of Power System Protection -- 2.1 Faults Classification -- 2.2 Protection System -- 2.3 Zones of Protection -- 2.4 Primary and Backup Protection -- 2.5 Performance and Design Criteria -- 2.5.1 Reliability -- 2.5.1.1 Dependability -- 2.5.1.2 Security -- 2.5.2 Sensitivity -- 2.5.3 Speed -- 2.5.4 Selectivity -- 2.5.5 Performance versus Economics -- 2.5.6 Adequateness -- 2.5.7 Simplicity -- 2.6 Overcurrent Protective Devices -- 2.6.1 Fuses -- 2.6.2 Bimetallic Relays -- 2.6.3 Overcurrent Protective Relays -- 2.6.4 Instantaneous OCR (IOCR) -- 2.6.5 Definite Time OCR (DTOCR) -- 2.6.6 Inverse Time OCR (ITOCR) -- 2.6.7 Mixed Characteristic Curves -- 2.6.7.1 Definite‐Time Plus Instantaneous -- 2.6.7.2 Inverse‐Time Plus Instantaneous -- 2.6.7.3 Inverse‐Time Plus Definite‐Time Plus Instantaneous -- 2.6.7.4 Inverse‐Time Plus Definite‐Time -- 2.6.7.5 Inverse Definite Minimum Time (IDMT) -- Problems -- Written Exercises -- Computer Exercises -- Chapter 3 Mathematical Modeling of Inverse‐Time Overcurrent Relay Characteristics -- 3.1 Computer Representation of Inverse‐Time Overcurrent Relay Characteristics -- 3.1.1 Direct Data Storage -- 3.1.2 Curve Fitting Formulas -- 3.1.2.1 Polynomial Equations -- 3.1.2.2 Exponential Equations -- 3.1.2.3 Artificial Intelligence -- 3.1.3 Special Models -- 3.1.3.1 RI‐Type Characteristic -- 3.1.3.2 RD‐Type Characteristic -- 3.1.3.3 FR Short Time Inverse -- 3.1.3.4 UK Rectifier Protection -- 3.1.3.5 BNP‐Type Characteristic -- 3.1.3.6 Standard CO Series Characteristics -- 3.1.3.7 IAC and ANSI Special Equations -- 3.1.4 User‐Defined Curves -- 3.2 Dealing with All the Standard Characteristic Curves Together -- 3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting 3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable -- 3.2.2.1 Fixed Divisor -- 3.2.2.2 Linear Interpolation -- 3.2.3 General Guidelines Before Conducting Researches and Studies -- Problems -- Written Exercises -- Computer Exercises -- Chapter 4 Upper Limit of Relay Operating Time -- 4.1 Do We Need to Define Tmax? -- 4.2 How to Define Tmax? -- 4.2.1 Thermal Equations -- 4.2.1.1 Thermal Overload Protection for 3 ϕ Overhead Lines and Cables -- 4.2.1.2 Thermal Overload Protection for Motors -- 4.2.1.3 Thermal Overload Protection for Transformers -- 4.2.2 Stability Analysis -- Problems -- Written Exercises -- Computer Exercises -- Chapter 5 Directional Overcurrent Relays and the Importance of Relay Coordination -- 5.1 Relay Grading in Radial Systems -- 5.1.1 Time Grading -- 5.1.2 Current Grading -- 5.1.3 Inverse‐Time Grading -- 5.2 Directional Overcurrent Relays -- 5.3 Coordination of DOCRs -- 5.4 Is the Coordination of DOCRs an Iterative Problem? -- 5.5 Minimum Break‐Point Set -- 5.6 Summary -- Problems -- Written Exercises -- Computer Exercises -- Chapter 6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays -- 6.1 Constructing Power Network -- 6.2 Power Flow Analysis -- 6.2.1 Per‐Unit System and Three‐to‐One‐Phase Conversion -- 6.2.2 Power Flow Solvers -- 6.2.3 How to Apply the Newton-Raphson Method -- 6.2.4 Sparsity Effect -- 6.3 P/B Pairs Identification -- 6.3.1 Inspection Method -- 6.3.2 Graph Theory Methods -- 6.3.3 Special Software -- 6.4 Short‐Circuit Analysis -- 6.4.1 Short‐Circuit Calculations -- 6.4.2 Electric Power Engineering Software Tools -- 6.4.2.1 Minimum Short‐Circuit Current -- 6.4.2.2 Maximum Short‐Circuit Current -- 6.4.3 Most Popular Standards -- 6.4.3.1 ANSI/IEEE Standards C37 & -- UL 489 -- 6.4.3.2 IEC 61363 Standard -- 6.4.3.3 IEC 60909 Standard 6.5 Applying Optimization Techniques -- Problems -- Written Exercises -- Computer Exercises -- Chapter 7 Optimal Coordination of Inverse‐Time DOCRs with Unified TCCC -- 7.1 Mathematical Problem Formulation -- 7.1.1 Objective Function -- 7.1.1.1 Other Possible Objective Functions -- 7.1.2 Inequality Constraints on Relay Operating Times -- 7.1.3 Side Constraints on Relay Time Multiplier Settings -- 7.1.4 Side Constraints on Relay Plug Settings -- 7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs -- 7.1.5.1 Transient Selectivity Constraint -- 7.1.6 Standard Optimization Model -- 7.2 Optimal Coordination of DOCRs Using Meta‐Heuristic Optimization Algorithms -- 7.2.1 Algorithm Implementation -- 7.2.2 Constraint‐Handling Techniques -- 7.2.3 Solving the Infeasibility Condition -- 7.3 Results Tester -- Problems -- Written Exercises -- Computer Exercises -- Chapter 8 Incorporating LP and Hybridizing It with Meta‐heuristic Algorithms -- 8.1 Model Linearization -- 8.1.1 Classical Linearization Approach -- 8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings -- 8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings -- 8.1.2 Transformation‐Based Linearization Approach -- 8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings -- 8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings -- 8.2 Multi‐start Linear Programming -- 8.3 Hybridizing Linear Programming with Population‐Based Meta‐heuristic Optimization Algorithms -- 8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS -- 8.3.2 Transformation‐Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS -- 8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS -- Problems -- Written Exercises -- Computer Exercises Chapter 9 Optimal Coordination of DOCRs With OCRs and Fuses -- 9.1 Simple Networks -- 9.1.1 Protecting Radial Networks by Just OCRs -- 9.1.2 Protecting Double‐Line Networks by OCRs and DOCRs -- 9.2 Little Harder Networks -- 9.2.1 Combination of OCRs and DOCRs -- 9.2.2 Combination of Fuses, OCRs, and DOCRs -- 9.3 Complex Networks -- Problems -- Written Exercises -- Computer Exercises -- Chapter 10 Optimal Coordination with Considering Multiple Characteristic Curves -- 10.1 Introduction -- 10.2 Optimal Coordination of DOCRs with Multiple TCCCs -- 10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs -- 10.4 Inherent Weaknesses of the Multi‐TCCCs Approach -- Problems -- Written Exercises -- Computer Exercises -- Chapter 11 Optimal Coordination with Considering the Best TCCC -- 11.1 Introduction -- 11.2 Possible Structures of the Optimizer -- 11.3 Technical Issue -- Problems -- Written Exercises -- Computer Exercises -- Chapter 12 Considering the Actual Settings of Different Relay Technologies in the Same Network -- 12.1 Introduction -- 12.2 Mathematical Formulation -- 12.2.1 Objective Function -- 12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs -- 12.2.3 Inequality Constraints on Relay Operating Times -- 12.2.4 Side Constraints on Relay Time Multiplier Settings -- 12.2.5 Side Constraints on Relay Plug Settings -- 12.3 Biogeography‐Based Optimization Algorithm -- 12.3.1 Clear Duplication Stage -- 12.3.2 Avoiding Facing Infeasible Selectivity Constraints -- 12.3.2.1 Linear Programming Stage -- 12.3.3 Linking PSiyi and TMSiyi with yi -- 12.4 Further Discussion -- Problems -- Written Exercises -- Computer Exercises -- Chapter 13 Considering Double Primary Relay Strategy -- 13.1 Introduction -- 13.2 Mathematical Formulation -- 13.2.1 Objective Function -- 13.2.2 Selectivity Constraint 13.2.3 Inequality Constraints on Relay Operating Times |
ctrlnum | (ZDB-30-PQE)EBC6817979 (ZDB-30-PAD)EBC6817979 (ZDB-89-EBL)EBL6817979 (OCoLC)1288214140 (DE-599)BVBBV048221327 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11223nmm a2200529zc 4500</leader><controlfield tag="001">BV048221327</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119794929</subfield><subfield code="9">978-1-119-79492-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119794905</subfield><subfield code="9">978-1-119-79490-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119794912</subfield><subfield code="9">9781119794912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6817979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6817979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6817979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1288214140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221327</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Al-Roomi, Ali R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal coordination of power protective devices with illustrative examples</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxx, 491 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press Series on Power and Energy Systems Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- About The Companion Website -- Introduction -- Chapter 1 Fundamental Steps in Optimization Algorithms -- 1.1 Overview -- 1.1.1 Design Variables -- 1.1.2 Design Parameters -- 1.1.3 Design Function -- 1.1.4 Objective Function(s) -- 1.1.5 Design Constraints -- 1.1.5.1 Mathematical Constraints -- 1.1.5.2 Inequality Constraints -- 1.1.5.3 Side Constraints -- 1.1.6 General Principles -- 1.1.6.1 Feasible Space vs. Search Space -- 1.1.6.2 Global Optimum vs. Local Optimum -- 1.1.6.3 Types of Problem -- 1.1.7 Standard Format -- 1.1.8 Constraint‐Handling Techniques -- 1.1.8.1 Random Search Method -- 1.1.8.2 Constant Penalty Function -- 1.1.8.3 Binary Static Penalty Function -- 1.1.8.4 Superiority of Feasible Points (SFPs) - Type I -- 1.1.8.5 Superiority of Feasible Points (SFP) - Type II -- 1.1.8.6 Eclectic Evolutionary Algorithm -- 1.1.8.7 Typical Dynamic Penalty Function -- 1.1.8.8 Exponential Dynamic Penalty Function -- 1.1.8.9 Adaptive Multiplication Penalty Function -- 1.1.8.10 Self‐Adaptive Penalty Function (SAPF) -- 1.1.9 Performance Criteria Used to Evaluate Algorithms -- 1.1.10 Types of Optimization Techniques -- 1.2 Classical Optimization Algorithms -- 1.2.1 Linear Programming -- 1.2.1.1 Historical Time‐Line -- 1.2.1.2 Mathematical Formulation of LP Problems -- 1.2.1.3 Linear Programming Solvers -- 1.2.2 Global‐Local Optimization Strategy -- 1.2.2.1 Multi‐Start Linear Programming -- 1.2.2.2 Hybridizing LP with Meta‐Heuristic Optimization Algorithms as a Fine‐Tuning Unit -- 1.3 Meta‐Heuristic Algorithms -- 1.3.1 Biogeography‐Based Optimization -- 1.3.1.1 Migration Stage -- 1.3.1.2 Mutation Stage -- 1.3.1.3 Clear Duplication Stage -- 1.3.1.4 Elitism Stage -- 1.3.1.5 The Overall BBO Algorithm -- 1.3.2 Differential Evolution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4 Hybrid Optimization Algorithms -- 1.4.1 BBO‐LP -- 1.4.2 BBO/DE -- Problems -- Written Exercises -- Computer Exercises -- Chapter 2 Fundamentals of Power System Protection -- 2.1 Faults Classification -- 2.2 Protection System -- 2.3 Zones of Protection -- 2.4 Primary and Backup Protection -- 2.5 Performance and Design Criteria -- 2.5.1 Reliability -- 2.5.1.1 Dependability -- 2.5.1.2 Security -- 2.5.2 Sensitivity -- 2.5.3 Speed -- 2.5.4 Selectivity -- 2.5.5 Performance versus Economics -- 2.5.6 Adequateness -- 2.5.7 Simplicity -- 2.6 Overcurrent Protective Devices -- 2.6.1 Fuses -- 2.6.2 Bimetallic Relays -- 2.6.3 Overcurrent Protective Relays -- 2.6.4 Instantaneous OCR (IOCR) -- 2.6.5 Definite Time OCR (DTOCR) -- 2.6.6 Inverse Time OCR (ITOCR) -- 2.6.7 Mixed Characteristic Curves -- 2.6.7.1 Definite‐Time Plus Instantaneous -- 2.6.7.2 Inverse‐Time Plus Instantaneous -- 2.6.7.3 Inverse‐Time Plus Definite‐Time Plus Instantaneous -- 2.6.7.4 Inverse‐Time Plus Definite‐Time -- 2.6.7.5 Inverse Definite Minimum Time (IDMT) -- Problems -- Written Exercises -- Computer Exercises -- Chapter 3 Mathematical Modeling of Inverse‐Time Overcurrent Relay Characteristics -- 3.1 Computer Representation of Inverse‐Time Overcurrent Relay Characteristics -- 3.1.1 Direct Data Storage -- 3.1.2 Curve Fitting Formulas -- 3.1.2.1 Polynomial Equations -- 3.1.2.2 Exponential Equations -- 3.1.2.3 Artificial Intelligence -- 3.1.3 Special Models -- 3.1.3.1 RI‐Type Characteristic -- 3.1.3.2 RD‐Type Characteristic -- 3.1.3.3 FR Short Time Inverse -- 3.1.3.4 UK Rectifier Protection -- 3.1.3.5 BNP‐Type Characteristic -- 3.1.3.6 Standard CO Series Characteristics -- 3.1.3.7 IAC and ANSI Special Equations -- 3.1.4 User‐Defined Curves -- 3.2 Dealing with All the Standard Characteristic Curves Together -- 3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable -- 3.2.2.1 Fixed Divisor -- 3.2.2.2 Linear Interpolation -- 3.2.3 General Guidelines Before Conducting Researches and Studies -- Problems -- Written Exercises -- Computer Exercises -- Chapter 4 Upper Limit of Relay Operating Time -- 4.1 Do We Need to Define Tmax? -- 4.2 How to Define Tmax? -- 4.2.1 Thermal Equations -- 4.2.1.1 Thermal Overload Protection for 3 ϕ Overhead Lines and Cables -- 4.2.1.2 Thermal Overload Protection for Motors -- 4.2.1.3 Thermal Overload Protection for Transformers -- 4.2.2 Stability Analysis -- Problems -- Written Exercises -- Computer Exercises -- Chapter 5 Directional Overcurrent Relays and the Importance of Relay Coordination -- 5.1 Relay Grading in Radial Systems -- 5.1.1 Time Grading -- 5.1.2 Current Grading -- 5.1.3 Inverse‐Time Grading -- 5.2 Directional Overcurrent Relays -- 5.3 Coordination of DOCRs -- 5.4 Is the Coordination of DOCRs an Iterative Problem? -- 5.5 Minimum Break‐Point Set -- 5.6 Summary -- Problems -- Written Exercises -- Computer Exercises -- Chapter 6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays -- 6.1 Constructing Power Network -- 6.2 Power Flow Analysis -- 6.2.1 Per‐Unit System and Three‐to‐One‐Phase Conversion -- 6.2.2 Power Flow Solvers -- 6.2.3 How to Apply the Newton-Raphson Method -- 6.2.4 Sparsity Effect -- 6.3 P/B Pairs Identification -- 6.3.1 Inspection Method -- 6.3.2 Graph Theory Methods -- 6.3.3 Special Software -- 6.4 Short‐Circuit Analysis -- 6.4.1 Short‐Circuit Calculations -- 6.4.2 Electric Power Engineering Software Tools -- 6.4.2.1 Minimum Short‐Circuit Current -- 6.4.2.2 Maximum Short‐Circuit Current -- 6.4.3 Most Popular Standards -- 6.4.3.1 ANSI/IEEE Standards C37 &amp -- UL 489 -- 6.4.3.2 IEC 61363 Standard -- 6.4.3.3 IEC 60909 Standard</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.5 Applying Optimization Techniques -- Problems -- Written Exercises -- Computer Exercises -- Chapter 7 Optimal Coordination of Inverse‐Time DOCRs with Unified TCCC -- 7.1 Mathematical Problem Formulation -- 7.1.1 Objective Function -- 7.1.1.1 Other Possible Objective Functions -- 7.1.2 Inequality Constraints on Relay Operating Times -- 7.1.3 Side Constraints on Relay Time Multiplier Settings -- 7.1.4 Side Constraints on Relay Plug Settings -- 7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs -- 7.1.5.1 Transient Selectivity Constraint -- 7.1.6 Standard Optimization Model -- 7.2 Optimal Coordination of DOCRs Using Meta‐Heuristic Optimization Algorithms -- 7.2.1 Algorithm Implementation -- 7.2.2 Constraint‐Handling Techniques -- 7.2.3 Solving the Infeasibility Condition -- 7.3 Results Tester -- Problems -- Written Exercises -- Computer Exercises -- Chapter 8 Incorporating LP and Hybridizing It with Meta‐heuristic Algorithms -- 8.1 Model Linearization -- 8.1.1 Classical Linearization Approach -- 8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings -- 8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings -- 8.1.2 Transformation‐Based Linearization Approach -- 8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings -- 8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings -- 8.2 Multi‐start Linear Programming -- 8.3 Hybridizing Linear Programming with Population‐Based Meta‐heuristic Optimization Algorithms -- 8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS -- 8.3.2 Transformation‐Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS -- 8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS -- Problems -- Written Exercises -- Computer Exercises</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 9 Optimal Coordination of DOCRs With OCRs and Fuses -- 9.1 Simple Networks -- 9.1.1 Protecting Radial Networks by Just OCRs -- 9.1.2 Protecting Double‐Line Networks by OCRs and DOCRs -- 9.2 Little Harder Networks -- 9.2.1 Combination of OCRs and DOCRs -- 9.2.2 Combination of Fuses, OCRs, and DOCRs -- 9.3 Complex Networks -- Problems -- Written Exercises -- Computer Exercises -- Chapter 10 Optimal Coordination with Considering Multiple Characteristic Curves -- 10.1 Introduction -- 10.2 Optimal Coordination of DOCRs with Multiple TCCCs -- 10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs -- 10.4 Inherent Weaknesses of the Multi‐TCCCs Approach -- Problems -- Written Exercises -- Computer Exercises -- Chapter 11 Optimal Coordination with Considering the Best TCCC -- 11.1 Introduction -- 11.2 Possible Structures of the Optimizer -- 11.3 Technical Issue -- Problems -- Written Exercises -- Computer Exercises -- Chapter 12 Considering the Actual Settings of Different Relay Technologies in the Same Network -- 12.1 Introduction -- 12.2 Mathematical Formulation -- 12.2.1 Objective Function -- 12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs -- 12.2.3 Inequality Constraints on Relay Operating Times -- 12.2.4 Side Constraints on Relay Time Multiplier Settings -- 12.2.5 Side Constraints on Relay Plug Settings -- 12.3 Biogeography‐Based Optimization Algorithm -- 12.3.1 Clear Duplication Stage -- 12.3.2 Avoiding Facing Infeasible Selectivity Constraints -- 12.3.2.1 Linear Programming Stage -- 12.3.3 Linking PSiyi and TMSiyi with yi -- 12.4 Further Discussion -- Problems -- Written Exercises -- Computer Exercises -- Chapter 13 Considering Double Primary Relay Strategy -- 13.1 Introduction -- 13.2 Mathematical Formulation -- 13.2.1 Objective Function -- 13.2.2 Selectivity Constraint</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.2.3 Inequality Constraints on Relay Operating Times</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schutz</subfield><subfield code="g">Elektrotechnik</subfield><subfield code="0">(DE-588)4128586-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schutz</subfield><subfield code="g">Elektrotechnik</subfield><subfield code="0">(DE-588)4128586-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-79485-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602064</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9635025</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221327 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781119794929 9781119794905 9781119794912 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602064 |
oclc_num | 1288214140 |
open_access_boolean | |
owner | DE-83 DE-573 |
owner_facet | DE-83 DE-573 |
physical | 1 Online-Ressource (xxx, 491 Seiten) |
psigel | ZDB-35-WIC ZDB-30-PQE ZDB-35-WEL TUM_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | IEEE Press Series on Power and Energy Systems Ser |
spelling | Al-Roomi, Ali R. aut Optimal coordination of power protective devices with illustrative examples Hoboken, NJ John Wiley & Sons, Incorporated 2022 ©2022 1 Online-Ressource (xxx, 491 Seiten) txt rdacontent c rdamedia cr rdacarrier IEEE Press Series on Power and Energy Systems Ser Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- About The Companion Website -- Introduction -- Chapter 1 Fundamental Steps in Optimization Algorithms -- 1.1 Overview -- 1.1.1 Design Variables -- 1.1.2 Design Parameters -- 1.1.3 Design Function -- 1.1.4 Objective Function(s) -- 1.1.5 Design Constraints -- 1.1.5.1 Mathematical Constraints -- 1.1.5.2 Inequality Constraints -- 1.1.5.3 Side Constraints -- 1.1.6 General Principles -- 1.1.6.1 Feasible Space vs. Search Space -- 1.1.6.2 Global Optimum vs. Local Optimum -- 1.1.6.3 Types of Problem -- 1.1.7 Standard Format -- 1.1.8 Constraint‐Handling Techniques -- 1.1.8.1 Random Search Method -- 1.1.8.2 Constant Penalty Function -- 1.1.8.3 Binary Static Penalty Function -- 1.1.8.4 Superiority of Feasible Points (SFPs) - Type I -- 1.1.8.5 Superiority of Feasible Points (SFP) - Type II -- 1.1.8.6 Eclectic Evolutionary Algorithm -- 1.1.8.7 Typical Dynamic Penalty Function -- 1.1.8.8 Exponential Dynamic Penalty Function -- 1.1.8.9 Adaptive Multiplication Penalty Function -- 1.1.8.10 Self‐Adaptive Penalty Function (SAPF) -- 1.1.9 Performance Criteria Used to Evaluate Algorithms -- 1.1.10 Types of Optimization Techniques -- 1.2 Classical Optimization Algorithms -- 1.2.1 Linear Programming -- 1.2.1.1 Historical Time‐Line -- 1.2.1.2 Mathematical Formulation of LP Problems -- 1.2.1.3 Linear Programming Solvers -- 1.2.2 Global‐Local Optimization Strategy -- 1.2.2.1 Multi‐Start Linear Programming -- 1.2.2.2 Hybridizing LP with Meta‐Heuristic Optimization Algorithms as a Fine‐Tuning Unit -- 1.3 Meta‐Heuristic Algorithms -- 1.3.1 Biogeography‐Based Optimization -- 1.3.1.1 Migration Stage -- 1.3.1.2 Mutation Stage -- 1.3.1.3 Clear Duplication Stage -- 1.3.1.4 Elitism Stage -- 1.3.1.5 The Overall BBO Algorithm -- 1.3.2 Differential Evolution 1.4 Hybrid Optimization Algorithms -- 1.4.1 BBO‐LP -- 1.4.2 BBO/DE -- Problems -- Written Exercises -- Computer Exercises -- Chapter 2 Fundamentals of Power System Protection -- 2.1 Faults Classification -- 2.2 Protection System -- 2.3 Zones of Protection -- 2.4 Primary and Backup Protection -- 2.5 Performance and Design Criteria -- 2.5.1 Reliability -- 2.5.1.1 Dependability -- 2.5.1.2 Security -- 2.5.2 Sensitivity -- 2.5.3 Speed -- 2.5.4 Selectivity -- 2.5.5 Performance versus Economics -- 2.5.6 Adequateness -- 2.5.7 Simplicity -- 2.6 Overcurrent Protective Devices -- 2.6.1 Fuses -- 2.6.2 Bimetallic Relays -- 2.6.3 Overcurrent Protective Relays -- 2.6.4 Instantaneous OCR (IOCR) -- 2.6.5 Definite Time OCR (DTOCR) -- 2.6.6 Inverse Time OCR (ITOCR) -- 2.6.7 Mixed Characteristic Curves -- 2.6.7.1 Definite‐Time Plus Instantaneous -- 2.6.7.2 Inverse‐Time Plus Instantaneous -- 2.6.7.3 Inverse‐Time Plus Definite‐Time Plus Instantaneous -- 2.6.7.4 Inverse‐Time Plus Definite‐Time -- 2.6.7.5 Inverse Definite Minimum Time (IDMT) -- Problems -- Written Exercises -- Computer Exercises -- Chapter 3 Mathematical Modeling of Inverse‐Time Overcurrent Relay Characteristics -- 3.1 Computer Representation of Inverse‐Time Overcurrent Relay Characteristics -- 3.1.1 Direct Data Storage -- 3.1.2 Curve Fitting Formulas -- 3.1.2.1 Polynomial Equations -- 3.1.2.2 Exponential Equations -- 3.1.2.3 Artificial Intelligence -- 3.1.3 Special Models -- 3.1.3.1 RI‐Type Characteristic -- 3.1.3.2 RD‐Type Characteristic -- 3.1.3.3 FR Short Time Inverse -- 3.1.3.4 UK Rectifier Protection -- 3.1.3.5 BNP‐Type Characteristic -- 3.1.3.6 Standard CO Series Characteristics -- 3.1.3.7 IAC and ANSI Special Equations -- 3.1.4 User‐Defined Curves -- 3.2 Dealing with All the Standard Characteristic Curves Together -- 3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting 3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable -- 3.2.2.1 Fixed Divisor -- 3.2.2.2 Linear Interpolation -- 3.2.3 General Guidelines Before Conducting Researches and Studies -- Problems -- Written Exercises -- Computer Exercises -- Chapter 4 Upper Limit of Relay Operating Time -- 4.1 Do We Need to Define Tmax? -- 4.2 How to Define Tmax? -- 4.2.1 Thermal Equations -- 4.2.1.1 Thermal Overload Protection for 3 ϕ Overhead Lines and Cables -- 4.2.1.2 Thermal Overload Protection for Motors -- 4.2.1.3 Thermal Overload Protection for Transformers -- 4.2.2 Stability Analysis -- Problems -- Written Exercises -- Computer Exercises -- Chapter 5 Directional Overcurrent Relays and the Importance of Relay Coordination -- 5.1 Relay Grading in Radial Systems -- 5.1.1 Time Grading -- 5.1.2 Current Grading -- 5.1.3 Inverse‐Time Grading -- 5.2 Directional Overcurrent Relays -- 5.3 Coordination of DOCRs -- 5.4 Is the Coordination of DOCRs an Iterative Problem? -- 5.5 Minimum Break‐Point Set -- 5.6 Summary -- Problems -- Written Exercises -- Computer Exercises -- Chapter 6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays -- 6.1 Constructing Power Network -- 6.2 Power Flow Analysis -- 6.2.1 Per‐Unit System and Three‐to‐One‐Phase Conversion -- 6.2.2 Power Flow Solvers -- 6.2.3 How to Apply the Newton-Raphson Method -- 6.2.4 Sparsity Effect -- 6.3 P/B Pairs Identification -- 6.3.1 Inspection Method -- 6.3.2 Graph Theory Methods -- 6.3.3 Special Software -- 6.4 Short‐Circuit Analysis -- 6.4.1 Short‐Circuit Calculations -- 6.4.2 Electric Power Engineering Software Tools -- 6.4.2.1 Minimum Short‐Circuit Current -- 6.4.2.2 Maximum Short‐Circuit Current -- 6.4.3 Most Popular Standards -- 6.4.3.1 ANSI/IEEE Standards C37 & -- UL 489 -- 6.4.3.2 IEC 61363 Standard -- 6.4.3.3 IEC 60909 Standard 6.5 Applying Optimization Techniques -- Problems -- Written Exercises -- Computer Exercises -- Chapter 7 Optimal Coordination of Inverse‐Time DOCRs with Unified TCCC -- 7.1 Mathematical Problem Formulation -- 7.1.1 Objective Function -- 7.1.1.1 Other Possible Objective Functions -- 7.1.2 Inequality Constraints on Relay Operating Times -- 7.1.3 Side Constraints on Relay Time Multiplier Settings -- 7.1.4 Side Constraints on Relay Plug Settings -- 7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs -- 7.1.5.1 Transient Selectivity Constraint -- 7.1.6 Standard Optimization Model -- 7.2 Optimal Coordination of DOCRs Using Meta‐Heuristic Optimization Algorithms -- 7.2.1 Algorithm Implementation -- 7.2.2 Constraint‐Handling Techniques -- 7.2.3 Solving the Infeasibility Condition -- 7.3 Results Tester -- Problems -- Written Exercises -- Computer Exercises -- Chapter 8 Incorporating LP and Hybridizing It with Meta‐heuristic Algorithms -- 8.1 Model Linearization -- 8.1.1 Classical Linearization Approach -- 8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings -- 8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings -- 8.1.2 Transformation‐Based Linearization Approach -- 8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings -- 8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings -- 8.2 Multi‐start Linear Programming -- 8.3 Hybridizing Linear Programming with Population‐Based Meta‐heuristic Optimization Algorithms -- 8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS -- 8.3.2 Transformation‐Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS -- 8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS -- Problems -- Written Exercises -- Computer Exercises Chapter 9 Optimal Coordination of DOCRs With OCRs and Fuses -- 9.1 Simple Networks -- 9.1.1 Protecting Radial Networks by Just OCRs -- 9.1.2 Protecting Double‐Line Networks by OCRs and DOCRs -- 9.2 Little Harder Networks -- 9.2.1 Combination of OCRs and DOCRs -- 9.2.2 Combination of Fuses, OCRs, and DOCRs -- 9.3 Complex Networks -- Problems -- Written Exercises -- Computer Exercises -- Chapter 10 Optimal Coordination with Considering Multiple Characteristic Curves -- 10.1 Introduction -- 10.2 Optimal Coordination of DOCRs with Multiple TCCCs -- 10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs -- 10.4 Inherent Weaknesses of the Multi‐TCCCs Approach -- Problems -- Written Exercises -- Computer Exercises -- Chapter 11 Optimal Coordination with Considering the Best TCCC -- 11.1 Introduction -- 11.2 Possible Structures of the Optimizer -- 11.3 Technical Issue -- Problems -- Written Exercises -- Computer Exercises -- Chapter 12 Considering the Actual Settings of Different Relay Technologies in the Same Network -- 12.1 Introduction -- 12.2 Mathematical Formulation -- 12.2.1 Objective Function -- 12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs -- 12.2.3 Inequality Constraints on Relay Operating Times -- 12.2.4 Side Constraints on Relay Time Multiplier Settings -- 12.2.5 Side Constraints on Relay Plug Settings -- 12.3 Biogeography‐Based Optimization Algorithm -- 12.3.1 Clear Duplication Stage -- 12.3.2 Avoiding Facing Infeasible Selectivity Constraints -- 12.3.2.1 Linear Programming Stage -- 12.3.3 Linking PSiyi and TMSiyi with yi -- 12.4 Further Discussion -- Problems -- Written Exercises -- Computer Exercises -- Chapter 13 Considering Double Primary Relay Strategy -- 13.1 Introduction -- 13.2 Mathematical Formulation -- 13.2.1 Objective Function -- 13.2.2 Selectivity Constraint 13.2.3 Inequality Constraints on Relay Operating Times Elektrisches Energiesystem (DE-588)4134933-7 gnd rswk-swf Schutz Elektrotechnik (DE-588)4128586-4 gnd rswk-swf Elektrisches Energiesystem (DE-588)4134933-7 s Schutz Elektrotechnik (DE-588)4128586-4 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-119-79485-1 |
spellingShingle | Al-Roomi, Ali R. Optimal coordination of power protective devices with illustrative examples Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- About The Companion Website -- Introduction -- Chapter 1 Fundamental Steps in Optimization Algorithms -- 1.1 Overview -- 1.1.1 Design Variables -- 1.1.2 Design Parameters -- 1.1.3 Design Function -- 1.1.4 Objective Function(s) -- 1.1.5 Design Constraints -- 1.1.5.1 Mathematical Constraints -- 1.1.5.2 Inequality Constraints -- 1.1.5.3 Side Constraints -- 1.1.6 General Principles -- 1.1.6.1 Feasible Space vs. Search Space -- 1.1.6.2 Global Optimum vs. Local Optimum -- 1.1.6.3 Types of Problem -- 1.1.7 Standard Format -- 1.1.8 Constraint‐Handling Techniques -- 1.1.8.1 Random Search Method -- 1.1.8.2 Constant Penalty Function -- 1.1.8.3 Binary Static Penalty Function -- 1.1.8.4 Superiority of Feasible Points (SFPs) - Type I -- 1.1.8.5 Superiority of Feasible Points (SFP) - Type II -- 1.1.8.6 Eclectic Evolutionary Algorithm -- 1.1.8.7 Typical Dynamic Penalty Function -- 1.1.8.8 Exponential Dynamic Penalty Function -- 1.1.8.9 Adaptive Multiplication Penalty Function -- 1.1.8.10 Self‐Adaptive Penalty Function (SAPF) -- 1.1.9 Performance Criteria Used to Evaluate Algorithms -- 1.1.10 Types of Optimization Techniques -- 1.2 Classical Optimization Algorithms -- 1.2.1 Linear Programming -- 1.2.1.1 Historical Time‐Line -- 1.2.1.2 Mathematical Formulation of LP Problems -- 1.2.1.3 Linear Programming Solvers -- 1.2.2 Global‐Local Optimization Strategy -- 1.2.2.1 Multi‐Start Linear Programming -- 1.2.2.2 Hybridizing LP with Meta‐Heuristic Optimization Algorithms as a Fine‐Tuning Unit -- 1.3 Meta‐Heuristic Algorithms -- 1.3.1 Biogeography‐Based Optimization -- 1.3.1.1 Migration Stage -- 1.3.1.2 Mutation Stage -- 1.3.1.3 Clear Duplication Stage -- 1.3.1.4 Elitism Stage -- 1.3.1.5 The Overall BBO Algorithm -- 1.3.2 Differential Evolution 1.4 Hybrid Optimization Algorithms -- 1.4.1 BBO‐LP -- 1.4.2 BBO/DE -- Problems -- Written Exercises -- Computer Exercises -- Chapter 2 Fundamentals of Power System Protection -- 2.1 Faults Classification -- 2.2 Protection System -- 2.3 Zones of Protection -- 2.4 Primary and Backup Protection -- 2.5 Performance and Design Criteria -- 2.5.1 Reliability -- 2.5.1.1 Dependability -- 2.5.1.2 Security -- 2.5.2 Sensitivity -- 2.5.3 Speed -- 2.5.4 Selectivity -- 2.5.5 Performance versus Economics -- 2.5.6 Adequateness -- 2.5.7 Simplicity -- 2.6 Overcurrent Protective Devices -- 2.6.1 Fuses -- 2.6.2 Bimetallic Relays -- 2.6.3 Overcurrent Protective Relays -- 2.6.4 Instantaneous OCR (IOCR) -- 2.6.5 Definite Time OCR (DTOCR) -- 2.6.6 Inverse Time OCR (ITOCR) -- 2.6.7 Mixed Characteristic Curves -- 2.6.7.1 Definite‐Time Plus Instantaneous -- 2.6.7.2 Inverse‐Time Plus Instantaneous -- 2.6.7.3 Inverse‐Time Plus Definite‐Time Plus Instantaneous -- 2.6.7.4 Inverse‐Time Plus Definite‐Time -- 2.6.7.5 Inverse Definite Minimum Time (IDMT) -- Problems -- Written Exercises -- Computer Exercises -- Chapter 3 Mathematical Modeling of Inverse‐Time Overcurrent Relay Characteristics -- 3.1 Computer Representation of Inverse‐Time Overcurrent Relay Characteristics -- 3.1.1 Direct Data Storage -- 3.1.2 Curve Fitting Formulas -- 3.1.2.1 Polynomial Equations -- 3.1.2.2 Exponential Equations -- 3.1.2.3 Artificial Intelligence -- 3.1.3 Special Models -- 3.1.3.1 RI‐Type Characteristic -- 3.1.3.2 RD‐Type Characteristic -- 3.1.3.3 FR Short Time Inverse -- 3.1.3.4 UK Rectifier Protection -- 3.1.3.5 BNP‐Type Characteristic -- 3.1.3.6 Standard CO Series Characteristics -- 3.1.3.7 IAC and ANSI Special Equations -- 3.1.4 User‐Defined Curves -- 3.2 Dealing with All the Standard Characteristic Curves Together -- 3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting 3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable -- 3.2.2.1 Fixed Divisor -- 3.2.2.2 Linear Interpolation -- 3.2.3 General Guidelines Before Conducting Researches and Studies -- Problems -- Written Exercises -- Computer Exercises -- Chapter 4 Upper Limit of Relay Operating Time -- 4.1 Do We Need to Define Tmax? -- 4.2 How to Define Tmax? -- 4.2.1 Thermal Equations -- 4.2.1.1 Thermal Overload Protection for 3 ϕ Overhead Lines and Cables -- 4.2.1.2 Thermal Overload Protection for Motors -- 4.2.1.3 Thermal Overload Protection for Transformers -- 4.2.2 Stability Analysis -- Problems -- Written Exercises -- Computer Exercises -- Chapter 5 Directional Overcurrent Relays and the Importance of Relay Coordination -- 5.1 Relay Grading in Radial Systems -- 5.1.1 Time Grading -- 5.1.2 Current Grading -- 5.1.3 Inverse‐Time Grading -- 5.2 Directional Overcurrent Relays -- 5.3 Coordination of DOCRs -- 5.4 Is the Coordination of DOCRs an Iterative Problem? -- 5.5 Minimum Break‐Point Set -- 5.6 Summary -- Problems -- Written Exercises -- Computer Exercises -- Chapter 6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays -- 6.1 Constructing Power Network -- 6.2 Power Flow Analysis -- 6.2.1 Per‐Unit System and Three‐to‐One‐Phase Conversion -- 6.2.2 Power Flow Solvers -- 6.2.3 How to Apply the Newton-Raphson Method -- 6.2.4 Sparsity Effect -- 6.3 P/B Pairs Identification -- 6.3.1 Inspection Method -- 6.3.2 Graph Theory Methods -- 6.3.3 Special Software -- 6.4 Short‐Circuit Analysis -- 6.4.1 Short‐Circuit Calculations -- 6.4.2 Electric Power Engineering Software Tools -- 6.4.2.1 Minimum Short‐Circuit Current -- 6.4.2.2 Maximum Short‐Circuit Current -- 6.4.3 Most Popular Standards -- 6.4.3.1 ANSI/IEEE Standards C37 & -- UL 489 -- 6.4.3.2 IEC 61363 Standard -- 6.4.3.3 IEC 60909 Standard 6.5 Applying Optimization Techniques -- Problems -- Written Exercises -- Computer Exercises -- Chapter 7 Optimal Coordination of Inverse‐Time DOCRs with Unified TCCC -- 7.1 Mathematical Problem Formulation -- 7.1.1 Objective Function -- 7.1.1.1 Other Possible Objective Functions -- 7.1.2 Inequality Constraints on Relay Operating Times -- 7.1.3 Side Constraints on Relay Time Multiplier Settings -- 7.1.4 Side Constraints on Relay Plug Settings -- 7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs -- 7.1.5.1 Transient Selectivity Constraint -- 7.1.6 Standard Optimization Model -- 7.2 Optimal Coordination of DOCRs Using Meta‐Heuristic Optimization Algorithms -- 7.2.1 Algorithm Implementation -- 7.2.2 Constraint‐Handling Techniques -- 7.2.3 Solving the Infeasibility Condition -- 7.3 Results Tester -- Problems -- Written Exercises -- Computer Exercises -- Chapter 8 Incorporating LP and Hybridizing It with Meta‐heuristic Algorithms -- 8.1 Model Linearization -- 8.1.1 Classical Linearization Approach -- 8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings -- 8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings -- 8.1.2 Transformation‐Based Linearization Approach -- 8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings -- 8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings -- 8.2 Multi‐start Linear Programming -- 8.3 Hybridizing Linear Programming with Population‐Based Meta‐heuristic Optimization Algorithms -- 8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS -- 8.3.2 Transformation‐Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS -- 8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS -- Problems -- Written Exercises -- Computer Exercises Chapter 9 Optimal Coordination of DOCRs With OCRs and Fuses -- 9.1 Simple Networks -- 9.1.1 Protecting Radial Networks by Just OCRs -- 9.1.2 Protecting Double‐Line Networks by OCRs and DOCRs -- 9.2 Little Harder Networks -- 9.2.1 Combination of OCRs and DOCRs -- 9.2.2 Combination of Fuses, OCRs, and DOCRs -- 9.3 Complex Networks -- Problems -- Written Exercises -- Computer Exercises -- Chapter 10 Optimal Coordination with Considering Multiple Characteristic Curves -- 10.1 Introduction -- 10.2 Optimal Coordination of DOCRs with Multiple TCCCs -- 10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs -- 10.4 Inherent Weaknesses of the Multi‐TCCCs Approach -- Problems -- Written Exercises -- Computer Exercises -- Chapter 11 Optimal Coordination with Considering the Best TCCC -- 11.1 Introduction -- 11.2 Possible Structures of the Optimizer -- 11.3 Technical Issue -- Problems -- Written Exercises -- Computer Exercises -- Chapter 12 Considering the Actual Settings of Different Relay Technologies in the Same Network -- 12.1 Introduction -- 12.2 Mathematical Formulation -- 12.2.1 Objective Function -- 12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs -- 12.2.3 Inequality Constraints on Relay Operating Times -- 12.2.4 Side Constraints on Relay Time Multiplier Settings -- 12.2.5 Side Constraints on Relay Plug Settings -- 12.3 Biogeography‐Based Optimization Algorithm -- 12.3.1 Clear Duplication Stage -- 12.3.2 Avoiding Facing Infeasible Selectivity Constraints -- 12.3.2.1 Linear Programming Stage -- 12.3.3 Linking PSiyi and TMSiyi with yi -- 12.4 Further Discussion -- Problems -- Written Exercises -- Computer Exercises -- Chapter 13 Considering Double Primary Relay Strategy -- 13.1 Introduction -- 13.2 Mathematical Formulation -- 13.2.1 Objective Function -- 13.2.2 Selectivity Constraint 13.2.3 Inequality Constraints on Relay Operating Times Elektrisches Energiesystem (DE-588)4134933-7 gnd Schutz Elektrotechnik (DE-588)4128586-4 gnd |
subject_GND | (DE-588)4134933-7 (DE-588)4128586-4 |
title | Optimal coordination of power protective devices with illustrative examples |
title_auth | Optimal coordination of power protective devices with illustrative examples |
title_exact_search | Optimal coordination of power protective devices with illustrative examples |
title_exact_search_txtP | Optimal coordination of power protective devices with illustrative examples |
title_full | Optimal coordination of power protective devices with illustrative examples |
title_fullStr | Optimal coordination of power protective devices with illustrative examples |
title_full_unstemmed | Optimal coordination of power protective devices with illustrative examples |
title_short | Optimal coordination of power protective devices with illustrative examples |
title_sort | optimal coordination of power protective devices with illustrative examples |
topic | Elektrisches Energiesystem (DE-588)4134933-7 gnd Schutz Elektrotechnik (DE-588)4128586-4 gnd |
topic_facet | Elektrisches Energiesystem Schutz Elektrotechnik |
work_keys_str_mv | AT alroomialir optimalcoordinationofpowerprotectivedeviceswithillustrativeexamples |