The Tactile Internet:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Inc.
2021
|
Online-Zugang: | FHI01 TUM01 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (xix, 232 Seiten) |
ISBN: | 9781119881063 9781119881070 9781119881087 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221318 | ||
003 | DE-604 | ||
005 | 20240229 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119881063 |9 978-1-119-88106-3 | ||
020 | |a 9781119881070 |9 9781119881070 | ||
020 | |a 9781119881087 |9 9781119881087 | ||
035 | |a (ZDB-30-PQE)EBC6817946 | ||
035 | |a (ZDB-30-PAD)EBC6817946 | ||
035 | |a (ZDB-89-EBL)EBL6817946 | ||
035 | |a (OCoLC)1288210428 | ||
035 | |a (DE-599)BVBBV048221318 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 | ||
082 | 0 | |a 004.678 | |
100 | 1 | |a Ali-Yahiya, Tara |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1280963166 |4 aut | |
245 | 1 | 0 | |a The Tactile Internet |c coordinated by Tara Ali-Yahiya Wrya Monnet |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Inc. |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xix, 232 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Acronyms -- 1. Introduction to Tactile Internet -- 1.1. Human perception and Tactile Internet -- 1.2. The roadmap towards Tactile Internet -- 1.3. What is Tactile Internet? -- 1.4. Cyber-Physical Systems and TI -- 1.4.1. Physical world -- 1.4.2. Internet of Things -- 1.4.3. Communication -- 1.4.4. Storage and computation -- 1.4.5. Feedback -- 1.4.6. Smart computing -- 1.5. References -- 2. Reference Architecture of the Tactile Internet -- 2.1. Tactile Internet system architecture -- 2.2. IEEE 1918.1 use cases -- 2.2.1. Teleoperation -- 2.2.2. Automotive -- 2.2.3. Immersive virtual reality (IVR) -- 2.2.4. Internet of drones -- 2.2.5. Interpersonal communication -- 2.2.6. Live haptic-enabled broadcast -- 2.2.7. Cooperative automated driving -- 2.3. Conclusion -- 2.4. References -- 3. Tactile Internet Key Enablers -- 3.1. Introduction -- 3.1.1. The fifth-generation system architecture -- 3.1.2. Network slicing -- 3.1.3. Network function virtualization -- 3.1.4. Software-defined networking -- 3.1.5. Edge computing -- 3.1.6. Artificial intelligence -- 3.2. Conclusion -- 3.3. References -- 4. 6G for Tactile Internet -- 4.1. Introduction -- 4.2. The architecture of 6G -- 4.2.1. Network performance of 6G -- 4.2.2. Space network -- 4.2.3. Air network -- 4.2.4. Ground network -- 4.2.5. Underwater network -- 4.3. 6G channel measurements and characteristics -- 4.3.1. Optical wireless channel -- 4.3.2. Unmanned aerial vehicle (UAV) channel -- 4.3.3. Underwater acoustic channel -- 4.3.4. Satellite channel -- 4.3.5. RF and terahertz networks in 6G -- 4.3.6. Visible light communication technology -- 4.3.7. Orbital angular momentum technology -- 4.4. 6G cellular Internet of Things -- 4.5. Energy self-sustainability (ESS) in 6G. | |
505 | 8 | |a 4.6. IoT-integrated ultrasmart city life -- 4.7. AI-enabled 6G networks -- 4.8. AIand ML-based security management in super IoT -- 4.9. Security for 6G -- 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet -- 4.11. References -- 5. IoT, IoE and Tactile Internet -- 5.1. From M2M to IoT -- 5.2. Classification of remote monitoring and control systems -- 5.3. IoT-enabling technologies -- 5.3.1. IoT hardware -- 5.3.2. IoT software -- 5.3.3. IoT connectivity -- 5.4. Architectural design and interfaces -- 5.5. IoT communication protocols -- 5.5.1. Message Queuing Telemetry Transport (MQTT) -- 5.5.2. Constrained Application Protocol (CoAP) -- 5.5.3. Data Distribution Service for real-time systems (DDS) -- 5.5.4. Open Mobile Alliance Device Management (OMA-DM) -- 5.6. Internet of Everything (IoE) -- 5.6.1. Enabling technologies for the IoE -- 5.7. Protocol comparisons and the readiness for TI -- 5.8. TI-IoT models and challenges -- 5.9. Edge computing in the IoT -- 5.9.1. Edge computing paradigms -- 5.10. Real-time IoT and analytics versus real time in TI -- 5.11. From IoT towards TI -- 5.12. Conclusion -- 5.13. References -- 6. Telerobotics -- 6.1. Introduction -- 6.2. Teleoperation evolution to telepresence -- 6.3. Telepresence applications -- 6.4. Teleoperation system components -- 6.4.1. Master domains -- 6.4.2. Network domain (communication channel) -- 6.4.3. Slave domain -- 6.5. Architecture of bilateral teleoperation control system -- 6.5.1. Classification of the control systems architectures -- 6.5.2. Discrete architecture with transmission delay -- 6.6. Performance and transparency of telepresence systems -- 6.6.1. Passivity and stability -- 6.6.2. Time delay issues -- 6.7. Other methods for time-delay mitigation -- 6.8. Teleoperation over the Internet | |
505 | 8 | |a 6.9. Multiple access to a teleoperation system -- 6.10. A use case -- 6.11. Conclusion -- 6.12. References -- 7. Haptic Data: Compression and Transmission Protocols -- 7.1. Introduction -- 7.2. Haptic perception -- 7.2.1. Human haptic perception -- 7.2.2. Telerobotic tactile and haptic perception -- 7.2.3. Tactile sensing for material recognition -- 7.2.4. Tactile sensing for object shape recognition -- 7.2.5. Tactile sensing for pose estimation -- 7.3. Haptic interfaces -- 7.3.1. Haptic interface for telepresence -- 7.3.2. Haptic and tactile sensors and actuators -- 7.4. Haptic compression -- 7.5. Haptic transport protocols -- 7.5.1. Application layer protocols -- 7.5.2. Transport layer protocols -- 7.6. Multi-transport protocols -- 7.7. Haptic transport protocol performance metrics -- 7.8. Conclusion -- 7.9. References -- 8. Mapping Wireless Networked Robotics into Tactile Internet -- 8.1. Wireless networked robots -- 8.2. WNR traffic requisites -- 8.2.1. Types of traffic in WNRs -- 8.3. Traffic shaping and TI haptic codecs -- 8.3.1. Introduction -- 8.3.2. Mapping WNR control traffic to TI -- 8.4. WNRs in the Tactile Internet architecture -- 8.4.1. WNRs in the TI architecture and interfaces -- 8.5. Conclusion -- 8.6. References -- 9. HoIP over 5G for Tactile Internet Teleoperation Application -- 9.1. Related works -- 9.2. 5G architecture design for Tactile Internet -- 9.2.1. Tactile edge A -- 9.2.2. Network domain -- 9.2.3. Protocol stack of 5G integration with IEEE 1918.1 -- 9.3. Haptics over IP -- 9.4. Teleoperation case study -- 9.4.1. Master to slave (uplink) data rate in edge A -- 9.4.2. Slave to master (downlink) data rate in edge B -- 9.4.3. Encapsulating the haptic data in HoIP -- 9.4.4. 5G network data and control handling -- 9.4.5. Case study operational states -- 9.4.6. Case study protocol stack -- 9.5. Simulation results | |
505 | 8 | |a 9.5.1. Simulation topology -- 9.5.2. NS3 network architecture -- 9.5.3. Simulation scenario -- 9.5.4. Simulation results -- 9.6. Conclusion -- 9.7. References -- 10. Issues and Challenges Facing Low Latency in the Tactile Internet -- 10.1. Introduction -- 10.1.1. Technical requirements for the TI -- 10.2. Low latency in the Tactile Internet -- 10.2.1. Resource allocation -- 10.2.2. Mobile edge computing -- 10.2.3. Network coding -- 10.2.4. Haptic communication protocols -- 10.3. Intelligence and the Tactile Internet -- 10.4. Edge intelligent -- 10.5. Open issues -- 10.6. Conclusion -- 10.7. References -- List of Authors -- Index -- EULA. | |
700 | 1 | |a Monnet, Wyra |d ca. 20./21. Jh. |e Sonstige |0 (DE-588)1280963476 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ali-Yahiya, Tara |t The Tactile Internet |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781789450200 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/9714892 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-35-IWT | ||
940 | 1 | |q TUM_PDA_PQE | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033602055 | ||
966 | e | |u https://ieeexplore.ieee.org/book/9714892 |l FHI01 |p ZDB-35-IWT |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6817946 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002208202752 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ali-Yahiya, Tara ca. 20./21. Jh |
author_GND | (DE-588)1280963166 (DE-588)1280963476 |
author_facet | Ali-Yahiya, Tara ca. 20./21. Jh |
author_role | aut |
author_sort | Ali-Yahiya, Tara ca. 20./21. Jh |
author_variant | t a y tay |
building | Verbundindex |
bvnumber | BV048221318 |
collection | ZDB-30-PQE ZDB-35-IWT |
contents | Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Acronyms -- 1. Introduction to Tactile Internet -- 1.1. Human perception and Tactile Internet -- 1.2. The roadmap towards Tactile Internet -- 1.3. What is Tactile Internet? -- 1.4. Cyber-Physical Systems and TI -- 1.4.1. Physical world -- 1.4.2. Internet of Things -- 1.4.3. Communication -- 1.4.4. Storage and computation -- 1.4.5. Feedback -- 1.4.6. Smart computing -- 1.5. References -- 2. Reference Architecture of the Tactile Internet -- 2.1. Tactile Internet system architecture -- 2.2. IEEE 1918.1 use cases -- 2.2.1. Teleoperation -- 2.2.2. Automotive -- 2.2.3. Immersive virtual reality (IVR) -- 2.2.4. Internet of drones -- 2.2.5. Interpersonal communication -- 2.2.6. Live haptic-enabled broadcast -- 2.2.7. Cooperative automated driving -- 2.3. Conclusion -- 2.4. References -- 3. Tactile Internet Key Enablers -- 3.1. Introduction -- 3.1.1. The fifth-generation system architecture -- 3.1.2. Network slicing -- 3.1.3. Network function virtualization -- 3.1.4. Software-defined networking -- 3.1.5. Edge computing -- 3.1.6. Artificial intelligence -- 3.2. Conclusion -- 3.3. References -- 4. 6G for Tactile Internet -- 4.1. Introduction -- 4.2. The architecture of 6G -- 4.2.1. Network performance of 6G -- 4.2.2. Space network -- 4.2.3. Air network -- 4.2.4. Ground network -- 4.2.5. Underwater network -- 4.3. 6G channel measurements and characteristics -- 4.3.1. Optical wireless channel -- 4.3.2. Unmanned aerial vehicle (UAV) channel -- 4.3.3. Underwater acoustic channel -- 4.3.4. Satellite channel -- 4.3.5. RF and terahertz networks in 6G -- 4.3.6. Visible light communication technology -- 4.3.7. Orbital angular momentum technology -- 4.4. 6G cellular Internet of Things -- 4.5. Energy self-sustainability (ESS) in 6G. 4.6. IoT-integrated ultrasmart city life -- 4.7. AI-enabled 6G networks -- 4.8. AIand ML-based security management in super IoT -- 4.9. Security for 6G -- 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet -- 4.11. References -- 5. IoT, IoE and Tactile Internet -- 5.1. From M2M to IoT -- 5.2. Classification of remote monitoring and control systems -- 5.3. IoT-enabling technologies -- 5.3.1. IoT hardware -- 5.3.2. IoT software -- 5.3.3. IoT connectivity -- 5.4. Architectural design and interfaces -- 5.5. IoT communication protocols -- 5.5.1. Message Queuing Telemetry Transport (MQTT) -- 5.5.2. Constrained Application Protocol (CoAP) -- 5.5.3. Data Distribution Service for real-time systems (DDS) -- 5.5.4. Open Mobile Alliance Device Management (OMA-DM) -- 5.6. Internet of Everything (IoE) -- 5.6.1. Enabling technologies for the IoE -- 5.7. Protocol comparisons and the readiness for TI -- 5.8. TI-IoT models and challenges -- 5.9. Edge computing in the IoT -- 5.9.1. Edge computing paradigms -- 5.10. Real-time IoT and analytics versus real time in TI -- 5.11. From IoT towards TI -- 5.12. Conclusion -- 5.13. References -- 6. Telerobotics -- 6.1. Introduction -- 6.2. Teleoperation evolution to telepresence -- 6.3. Telepresence applications -- 6.4. Teleoperation system components -- 6.4.1. Master domains -- 6.4.2. Network domain (communication channel) -- 6.4.3. Slave domain -- 6.5. Architecture of bilateral teleoperation control system -- 6.5.1. Classification of the control systems architectures -- 6.5.2. Discrete architecture with transmission delay -- 6.6. Performance and transparency of telepresence systems -- 6.6.1. Passivity and stability -- 6.6.2. Time delay issues -- 6.7. Other methods for time-delay mitigation -- 6.8. Teleoperation over the Internet 6.9. Multiple access to a teleoperation system -- 6.10. A use case -- 6.11. Conclusion -- 6.12. References -- 7. Haptic Data: Compression and Transmission Protocols -- 7.1. Introduction -- 7.2. Haptic perception -- 7.2.1. Human haptic perception -- 7.2.2. Telerobotic tactile and haptic perception -- 7.2.3. Tactile sensing for material recognition -- 7.2.4. Tactile sensing for object shape recognition -- 7.2.5. Tactile sensing for pose estimation -- 7.3. Haptic interfaces -- 7.3.1. Haptic interface for telepresence -- 7.3.2. Haptic and tactile sensors and actuators -- 7.4. Haptic compression -- 7.5. Haptic transport protocols -- 7.5.1. Application layer protocols -- 7.5.2. Transport layer protocols -- 7.6. Multi-transport protocols -- 7.7. Haptic transport protocol performance metrics -- 7.8. Conclusion -- 7.9. References -- 8. Mapping Wireless Networked Robotics into Tactile Internet -- 8.1. Wireless networked robots -- 8.2. WNR traffic requisites -- 8.2.1. Types of traffic in WNRs -- 8.3. Traffic shaping and TI haptic codecs -- 8.3.1. Introduction -- 8.3.2. Mapping WNR control traffic to TI -- 8.4. WNRs in the Tactile Internet architecture -- 8.4.1. WNRs in the TI architecture and interfaces -- 8.5. Conclusion -- 8.6. References -- 9. HoIP over 5G for Tactile Internet Teleoperation Application -- 9.1. Related works -- 9.2. 5G architecture design for Tactile Internet -- 9.2.1. Tactile edge A -- 9.2.2. Network domain -- 9.2.3. Protocol stack of 5G integration with IEEE 1918.1 -- 9.3. Haptics over IP -- 9.4. Teleoperation case study -- 9.4.1. Master to slave (uplink) data rate in edge A -- 9.4.2. Slave to master (downlink) data rate in edge B -- 9.4.3. Encapsulating the haptic data in HoIP -- 9.4.4. 5G network data and control handling -- 9.4.5. Case study operational states -- 9.4.6. Case study protocol stack -- 9.5. Simulation results 9.5.1. Simulation topology -- 9.5.2. NS3 network architecture -- 9.5.3. Simulation scenario -- 9.5.4. Simulation results -- 9.6. Conclusion -- 9.7. References -- 10. Issues and Challenges Facing Low Latency in the Tactile Internet -- 10.1. Introduction -- 10.1.1. Technical requirements for the TI -- 10.2. Low latency in the Tactile Internet -- 10.2.1. Resource allocation -- 10.2.2. Mobile edge computing -- 10.2.3. Network coding -- 10.2.4. Haptic communication protocols -- 10.3. Intelligence and the Tactile Internet -- 10.4. Edge intelligent -- 10.5. Open issues -- 10.6. Conclusion -- 10.7. References -- List of Authors -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6817946 (ZDB-30-PAD)EBC6817946 (ZDB-89-EBL)EBL6817946 (OCoLC)1288210428 (DE-599)BVBBV048221318 |
dewey-full | 004.678 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.678 |
dewey-search | 004.678 |
dewey-sort | 14.678 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07973nmm a2200469zc 4500</leader><controlfield tag="001">BV048221318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240229 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119881063</subfield><subfield code="9">978-1-119-88106-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119881070</subfield><subfield code="9">9781119881070</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119881087</subfield><subfield code="9">9781119881087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6817946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6817946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6817946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1288210428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.678</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali-Yahiya, Tara</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1280963166</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Tactile Internet</subfield><subfield code="c">coordinated by Tara Ali-Yahiya Wrya Monnet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 232 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Acronyms -- 1. Introduction to Tactile Internet -- 1.1. Human perception and Tactile Internet -- 1.2. The roadmap towards Tactile Internet -- 1.3. What is Tactile Internet? -- 1.4. Cyber-Physical Systems and TI -- 1.4.1. Physical world -- 1.4.2. Internet of Things -- 1.4.3. Communication -- 1.4.4. Storage and computation -- 1.4.5. Feedback -- 1.4.6. Smart computing -- 1.5. References -- 2. Reference Architecture of the Tactile Internet -- 2.1. Tactile Internet system architecture -- 2.2. IEEE 1918.1 use cases -- 2.2.1. Teleoperation -- 2.2.2. Automotive -- 2.2.3. Immersive virtual reality (IVR) -- 2.2.4. Internet of drones -- 2.2.5. Interpersonal communication -- 2.2.6. Live haptic-enabled broadcast -- 2.2.7. Cooperative automated driving -- 2.3. Conclusion -- 2.4. References -- 3. Tactile Internet Key Enablers -- 3.1. Introduction -- 3.1.1. The fifth-generation system architecture -- 3.1.2. Network slicing -- 3.1.3. Network function virtualization -- 3.1.4. Software-defined networking -- 3.1.5. Edge computing -- 3.1.6. Artificial intelligence -- 3.2. Conclusion -- 3.3. References -- 4. 6G for Tactile Internet -- 4.1. Introduction -- 4.2. The architecture of 6G -- 4.2.1. Network performance of 6G -- 4.2.2. Space network -- 4.2.3. Air network -- 4.2.4. Ground network -- 4.2.5. Underwater network -- 4.3. 6G channel measurements and characteristics -- 4.3.1. Optical wireless channel -- 4.3.2. Unmanned aerial vehicle (UAV) channel -- 4.3.3. Underwater acoustic channel -- 4.3.4. Satellite channel -- 4.3.5. RF and terahertz networks in 6G -- 4.3.6. Visible light communication technology -- 4.3.7. Orbital angular momentum technology -- 4.4. 6G cellular Internet of Things -- 4.5. Energy self-sustainability (ESS) in 6G.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6. IoT-integrated ultrasmart city life -- 4.7. AI-enabled 6G networks -- 4.8. AIand ML-based security management in super IoT -- 4.9. Security for 6G -- 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet -- 4.11. References -- 5. IoT, IoE and Tactile Internet -- 5.1. From M2M to IoT -- 5.2. Classification of remote monitoring and control systems -- 5.3. IoT-enabling technologies -- 5.3.1. IoT hardware -- 5.3.2. IoT software -- 5.3.3. IoT connectivity -- 5.4. Architectural design and interfaces -- 5.5. IoT communication protocols -- 5.5.1. Message Queuing Telemetry Transport (MQTT) -- 5.5.2. Constrained Application Protocol (CoAP) -- 5.5.3. Data Distribution Service for real-time systems (DDS) -- 5.5.4. Open Mobile Alliance Device Management (OMA-DM) -- 5.6. Internet of Everything (IoE) -- 5.6.1. Enabling technologies for the IoE -- 5.7. Protocol comparisons and the readiness for TI -- 5.8. TI-IoT models and challenges -- 5.9. Edge computing in the IoT -- 5.9.1. Edge computing paradigms -- 5.10. Real-time IoT and analytics versus real time in TI -- 5.11. From IoT towards TI -- 5.12. Conclusion -- 5.13. References -- 6. Telerobotics -- 6.1. Introduction -- 6.2. Teleoperation evolution to telepresence -- 6.3. Telepresence applications -- 6.4. Teleoperation system components -- 6.4.1. Master domains -- 6.4.2. Network domain (communication channel) -- 6.4.3. Slave domain -- 6.5. Architecture of bilateral teleoperation control system -- 6.5.1. Classification of the control systems architectures -- 6.5.2. Discrete architecture with transmission delay -- 6.6. Performance and transparency of telepresence systems -- 6.6.1. Passivity and stability -- 6.6.2. Time delay issues -- 6.7. Other methods for time-delay mitigation -- 6.8. Teleoperation over the Internet</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.9. Multiple access to a teleoperation system -- 6.10. A use case -- 6.11. Conclusion -- 6.12. References -- 7. Haptic Data: Compression and Transmission Protocols -- 7.1. Introduction -- 7.2. Haptic perception -- 7.2.1. Human haptic perception -- 7.2.2. Telerobotic tactile and haptic perception -- 7.2.3. Tactile sensing for material recognition -- 7.2.4. Tactile sensing for object shape recognition -- 7.2.5. Tactile sensing for pose estimation -- 7.3. Haptic interfaces -- 7.3.1. Haptic interface for telepresence -- 7.3.2. Haptic and tactile sensors and actuators -- 7.4. Haptic compression -- 7.5. Haptic transport protocols -- 7.5.1. Application layer protocols -- 7.5.2. Transport layer protocols -- 7.6. Multi-transport protocols -- 7.7. Haptic transport protocol performance metrics -- 7.8. Conclusion -- 7.9. References -- 8. Mapping Wireless Networked Robotics into Tactile Internet -- 8.1. Wireless networked robots -- 8.2. WNR traffic requisites -- 8.2.1. Types of traffic in WNRs -- 8.3. Traffic shaping and TI haptic codecs -- 8.3.1. Introduction -- 8.3.2. Mapping WNR control traffic to TI -- 8.4. WNRs in the Tactile Internet architecture -- 8.4.1. WNRs in the TI architecture and interfaces -- 8.5. Conclusion -- 8.6. References -- 9. HoIP over 5G for Tactile Internet Teleoperation Application -- 9.1. Related works -- 9.2. 5G architecture design for Tactile Internet -- 9.2.1. Tactile edge A -- 9.2.2. Network domain -- 9.2.3. Protocol stack of 5G integration with IEEE 1918.1 -- 9.3. Haptics over IP -- 9.4. Teleoperation case study -- 9.4.1. Master to slave (uplink) data rate in edge A -- 9.4.2. Slave to master (downlink) data rate in edge B -- 9.4.3. Encapsulating the haptic data in HoIP -- 9.4.4. 5G network data and control handling -- 9.4.5. Case study operational states -- 9.4.6. Case study protocol stack -- 9.5. Simulation results</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5.1. Simulation topology -- 9.5.2. NS3 network architecture -- 9.5.3. Simulation scenario -- 9.5.4. Simulation results -- 9.6. Conclusion -- 9.7. References -- 10. Issues and Challenges Facing Low Latency in the Tactile Internet -- 10.1. Introduction -- 10.1.1. Technical requirements for the TI -- 10.2. Low latency in the Tactile Internet -- 10.2.1. Resource allocation -- 10.2.2. Mobile edge computing -- 10.2.3. Network coding -- 10.2.4. Haptic communication protocols -- 10.3. Intelligence and the Tactile Internet -- 10.4. Edge intelligent -- 10.5. Open issues -- 10.6. Conclusion -- 10.7. References -- List of Authors -- Index -- EULA.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monnet, Wyra</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1280963476</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ali-Yahiya, Tara</subfield><subfield code="t">The Tactile Internet</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2022</subfield><subfield code="z">9781789450200</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9714892</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-IWT</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602055</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9714892</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-IWT</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6817946</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221318 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781119881063 9781119881070 9781119881087 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602055 |
oclc_num | 1288210428 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 |
owner_facet | DE-91 DE-BY-TUM DE-573 |
physical | 1 Online-Ressource (xix, 232 Seiten) |
psigel | ZDB-30-PQE ZDB-35-IWT TUM_PDA_PQE ZDB-30-PQE TUM_PDA_PQE |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
spelling | Ali-Yahiya, Tara ca. 20./21. Jh. Verfasser (DE-588)1280963166 aut The Tactile Internet coordinated by Tara Ali-Yahiya Wrya Monnet Hoboken, NJ John Wiley & Sons, Inc. 2021 ©2021 1 Online-Ressource (xix, 232 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Acronyms -- 1. Introduction to Tactile Internet -- 1.1. Human perception and Tactile Internet -- 1.2. The roadmap towards Tactile Internet -- 1.3. What is Tactile Internet? -- 1.4. Cyber-Physical Systems and TI -- 1.4.1. Physical world -- 1.4.2. Internet of Things -- 1.4.3. Communication -- 1.4.4. Storage and computation -- 1.4.5. Feedback -- 1.4.6. Smart computing -- 1.5. References -- 2. Reference Architecture of the Tactile Internet -- 2.1. Tactile Internet system architecture -- 2.2. IEEE 1918.1 use cases -- 2.2.1. Teleoperation -- 2.2.2. Automotive -- 2.2.3. Immersive virtual reality (IVR) -- 2.2.4. Internet of drones -- 2.2.5. Interpersonal communication -- 2.2.6. Live haptic-enabled broadcast -- 2.2.7. Cooperative automated driving -- 2.3. Conclusion -- 2.4. References -- 3. Tactile Internet Key Enablers -- 3.1. Introduction -- 3.1.1. The fifth-generation system architecture -- 3.1.2. Network slicing -- 3.1.3. Network function virtualization -- 3.1.4. Software-defined networking -- 3.1.5. Edge computing -- 3.1.6. Artificial intelligence -- 3.2. Conclusion -- 3.3. References -- 4. 6G for Tactile Internet -- 4.1. Introduction -- 4.2. The architecture of 6G -- 4.2.1. Network performance of 6G -- 4.2.2. Space network -- 4.2.3. Air network -- 4.2.4. Ground network -- 4.2.5. Underwater network -- 4.3. 6G channel measurements and characteristics -- 4.3.1. Optical wireless channel -- 4.3.2. Unmanned aerial vehicle (UAV) channel -- 4.3.3. Underwater acoustic channel -- 4.3.4. Satellite channel -- 4.3.5. RF and terahertz networks in 6G -- 4.3.6. Visible light communication technology -- 4.3.7. Orbital angular momentum technology -- 4.4. 6G cellular Internet of Things -- 4.5. Energy self-sustainability (ESS) in 6G. 4.6. IoT-integrated ultrasmart city life -- 4.7. AI-enabled 6G networks -- 4.8. AIand ML-based security management in super IoT -- 4.9. Security for 6G -- 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet -- 4.11. References -- 5. IoT, IoE and Tactile Internet -- 5.1. From M2M to IoT -- 5.2. Classification of remote monitoring and control systems -- 5.3. IoT-enabling technologies -- 5.3.1. IoT hardware -- 5.3.2. IoT software -- 5.3.3. IoT connectivity -- 5.4. Architectural design and interfaces -- 5.5. IoT communication protocols -- 5.5.1. Message Queuing Telemetry Transport (MQTT) -- 5.5.2. Constrained Application Protocol (CoAP) -- 5.5.3. Data Distribution Service for real-time systems (DDS) -- 5.5.4. Open Mobile Alliance Device Management (OMA-DM) -- 5.6. Internet of Everything (IoE) -- 5.6.1. Enabling technologies for the IoE -- 5.7. Protocol comparisons and the readiness for TI -- 5.8. TI-IoT models and challenges -- 5.9. Edge computing in the IoT -- 5.9.1. Edge computing paradigms -- 5.10. Real-time IoT and analytics versus real time in TI -- 5.11. From IoT towards TI -- 5.12. Conclusion -- 5.13. References -- 6. Telerobotics -- 6.1. Introduction -- 6.2. Teleoperation evolution to telepresence -- 6.3. Telepresence applications -- 6.4. Teleoperation system components -- 6.4.1. Master domains -- 6.4.2. Network domain (communication channel) -- 6.4.3. Slave domain -- 6.5. Architecture of bilateral teleoperation control system -- 6.5.1. Classification of the control systems architectures -- 6.5.2. Discrete architecture with transmission delay -- 6.6. Performance and transparency of telepresence systems -- 6.6.1. Passivity and stability -- 6.6.2. Time delay issues -- 6.7. Other methods for time-delay mitigation -- 6.8. Teleoperation over the Internet 6.9. Multiple access to a teleoperation system -- 6.10. A use case -- 6.11. Conclusion -- 6.12. References -- 7. Haptic Data: Compression and Transmission Protocols -- 7.1. Introduction -- 7.2. Haptic perception -- 7.2.1. Human haptic perception -- 7.2.2. Telerobotic tactile and haptic perception -- 7.2.3. Tactile sensing for material recognition -- 7.2.4. Tactile sensing for object shape recognition -- 7.2.5. Tactile sensing for pose estimation -- 7.3. Haptic interfaces -- 7.3.1. Haptic interface for telepresence -- 7.3.2. Haptic and tactile sensors and actuators -- 7.4. Haptic compression -- 7.5. Haptic transport protocols -- 7.5.1. Application layer protocols -- 7.5.2. Transport layer protocols -- 7.6. Multi-transport protocols -- 7.7. Haptic transport protocol performance metrics -- 7.8. Conclusion -- 7.9. References -- 8. Mapping Wireless Networked Robotics into Tactile Internet -- 8.1. Wireless networked robots -- 8.2. WNR traffic requisites -- 8.2.1. Types of traffic in WNRs -- 8.3. Traffic shaping and TI haptic codecs -- 8.3.1. Introduction -- 8.3.2. Mapping WNR control traffic to TI -- 8.4. WNRs in the Tactile Internet architecture -- 8.4.1. WNRs in the TI architecture and interfaces -- 8.5. Conclusion -- 8.6. References -- 9. HoIP over 5G for Tactile Internet Teleoperation Application -- 9.1. Related works -- 9.2. 5G architecture design for Tactile Internet -- 9.2.1. Tactile edge A -- 9.2.2. Network domain -- 9.2.3. Protocol stack of 5G integration with IEEE 1918.1 -- 9.3. Haptics over IP -- 9.4. Teleoperation case study -- 9.4.1. Master to slave (uplink) data rate in edge A -- 9.4.2. Slave to master (downlink) data rate in edge B -- 9.4.3. Encapsulating the haptic data in HoIP -- 9.4.4. 5G network data and control handling -- 9.4.5. Case study operational states -- 9.4.6. Case study protocol stack -- 9.5. Simulation results 9.5.1. Simulation topology -- 9.5.2. NS3 network architecture -- 9.5.3. Simulation scenario -- 9.5.4. Simulation results -- 9.6. Conclusion -- 9.7. References -- 10. Issues and Challenges Facing Low Latency in the Tactile Internet -- 10.1. Introduction -- 10.1.1. Technical requirements for the TI -- 10.2. Low latency in the Tactile Internet -- 10.2.1. Resource allocation -- 10.2.2. Mobile edge computing -- 10.2.3. Network coding -- 10.2.4. Haptic communication protocols -- 10.3. Intelligence and the Tactile Internet -- 10.4. Edge intelligent -- 10.5. Open issues -- 10.6. Conclusion -- 10.7. References -- List of Authors -- Index -- EULA. Monnet, Wyra ca. 20./21. Jh. Sonstige (DE-588)1280963476 oth Erscheint auch als Druck-Ausgabe Ali-Yahiya, Tara The Tactile Internet Newark : John Wiley & Sons, Incorporated,c2022 9781789450200 https://ieeexplore.ieee.org/book/9714892 Aggregator URL des Erstveröffentlichers Volltext |
spellingShingle | Ali-Yahiya, Tara ca. 20./21. Jh The Tactile Internet Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- List of Acronyms -- 1. Introduction to Tactile Internet -- 1.1. Human perception and Tactile Internet -- 1.2. The roadmap towards Tactile Internet -- 1.3. What is Tactile Internet? -- 1.4. Cyber-Physical Systems and TI -- 1.4.1. Physical world -- 1.4.2. Internet of Things -- 1.4.3. Communication -- 1.4.4. Storage and computation -- 1.4.5. Feedback -- 1.4.6. Smart computing -- 1.5. References -- 2. Reference Architecture of the Tactile Internet -- 2.1. Tactile Internet system architecture -- 2.2. IEEE 1918.1 use cases -- 2.2.1. Teleoperation -- 2.2.2. Automotive -- 2.2.3. Immersive virtual reality (IVR) -- 2.2.4. Internet of drones -- 2.2.5. Interpersonal communication -- 2.2.6. Live haptic-enabled broadcast -- 2.2.7. Cooperative automated driving -- 2.3. Conclusion -- 2.4. References -- 3. Tactile Internet Key Enablers -- 3.1. Introduction -- 3.1.1. The fifth-generation system architecture -- 3.1.2. Network slicing -- 3.1.3. Network function virtualization -- 3.1.4. Software-defined networking -- 3.1.5. Edge computing -- 3.1.6. Artificial intelligence -- 3.2. Conclusion -- 3.3. References -- 4. 6G for Tactile Internet -- 4.1. Introduction -- 4.2. The architecture of 6G -- 4.2.1. Network performance of 6G -- 4.2.2. Space network -- 4.2.3. Air network -- 4.2.4. Ground network -- 4.2.5. Underwater network -- 4.3. 6G channel measurements and characteristics -- 4.3.1. Optical wireless channel -- 4.3.2. Unmanned aerial vehicle (UAV) channel -- 4.3.3. Underwater acoustic channel -- 4.3.4. Satellite channel -- 4.3.5. RF and terahertz networks in 6G -- 4.3.6. Visible light communication technology -- 4.3.7. Orbital angular momentum technology -- 4.4. 6G cellular Internet of Things -- 4.5. Energy self-sustainability (ESS) in 6G. 4.6. IoT-integrated ultrasmart city life -- 4.7. AI-enabled 6G networks -- 4.8. AIand ML-based security management in super IoT -- 4.9. Security for 6G -- 4.10. The WEAF Mnecosystem (water, earth, air, fire micro/ nanoecosystem) with 6G and Tactile Internet -- 4.11. References -- 5. IoT, IoE and Tactile Internet -- 5.1. From M2M to IoT -- 5.2. Classification of remote monitoring and control systems -- 5.3. IoT-enabling technologies -- 5.3.1. IoT hardware -- 5.3.2. IoT software -- 5.3.3. IoT connectivity -- 5.4. Architectural design and interfaces -- 5.5. IoT communication protocols -- 5.5.1. Message Queuing Telemetry Transport (MQTT) -- 5.5.2. Constrained Application Protocol (CoAP) -- 5.5.3. Data Distribution Service for real-time systems (DDS) -- 5.5.4. Open Mobile Alliance Device Management (OMA-DM) -- 5.6. Internet of Everything (IoE) -- 5.6.1. Enabling technologies for the IoE -- 5.7. Protocol comparisons and the readiness for TI -- 5.8. TI-IoT models and challenges -- 5.9. Edge computing in the IoT -- 5.9.1. Edge computing paradigms -- 5.10. Real-time IoT and analytics versus real time in TI -- 5.11. From IoT towards TI -- 5.12. Conclusion -- 5.13. References -- 6. Telerobotics -- 6.1. Introduction -- 6.2. Teleoperation evolution to telepresence -- 6.3. Telepresence applications -- 6.4. Teleoperation system components -- 6.4.1. Master domains -- 6.4.2. Network domain (communication channel) -- 6.4.3. Slave domain -- 6.5. Architecture of bilateral teleoperation control system -- 6.5.1. Classification of the control systems architectures -- 6.5.2. Discrete architecture with transmission delay -- 6.6. Performance and transparency of telepresence systems -- 6.6.1. Passivity and stability -- 6.6.2. Time delay issues -- 6.7. Other methods for time-delay mitigation -- 6.8. Teleoperation over the Internet 6.9. Multiple access to a teleoperation system -- 6.10. A use case -- 6.11. Conclusion -- 6.12. References -- 7. Haptic Data: Compression and Transmission Protocols -- 7.1. Introduction -- 7.2. Haptic perception -- 7.2.1. Human haptic perception -- 7.2.2. Telerobotic tactile and haptic perception -- 7.2.3. Tactile sensing for material recognition -- 7.2.4. Tactile sensing for object shape recognition -- 7.2.5. Tactile sensing for pose estimation -- 7.3. Haptic interfaces -- 7.3.1. Haptic interface for telepresence -- 7.3.2. Haptic and tactile sensors and actuators -- 7.4. Haptic compression -- 7.5. Haptic transport protocols -- 7.5.1. Application layer protocols -- 7.5.2. Transport layer protocols -- 7.6. Multi-transport protocols -- 7.7. Haptic transport protocol performance metrics -- 7.8. Conclusion -- 7.9. References -- 8. Mapping Wireless Networked Robotics into Tactile Internet -- 8.1. Wireless networked robots -- 8.2. WNR traffic requisites -- 8.2.1. Types of traffic in WNRs -- 8.3. Traffic shaping and TI haptic codecs -- 8.3.1. Introduction -- 8.3.2. Mapping WNR control traffic to TI -- 8.4. WNRs in the Tactile Internet architecture -- 8.4.1. WNRs in the TI architecture and interfaces -- 8.5. Conclusion -- 8.6. References -- 9. HoIP over 5G for Tactile Internet Teleoperation Application -- 9.1. Related works -- 9.2. 5G architecture design for Tactile Internet -- 9.2.1. Tactile edge A -- 9.2.2. Network domain -- 9.2.3. Protocol stack of 5G integration with IEEE 1918.1 -- 9.3. Haptics over IP -- 9.4. Teleoperation case study -- 9.4.1. Master to slave (uplink) data rate in edge A -- 9.4.2. Slave to master (downlink) data rate in edge B -- 9.4.3. Encapsulating the haptic data in HoIP -- 9.4.4. 5G network data and control handling -- 9.4.5. Case study operational states -- 9.4.6. Case study protocol stack -- 9.5. Simulation results 9.5.1. Simulation topology -- 9.5.2. NS3 network architecture -- 9.5.3. Simulation scenario -- 9.5.4. Simulation results -- 9.6. Conclusion -- 9.7. References -- 10. Issues and Challenges Facing Low Latency in the Tactile Internet -- 10.1. Introduction -- 10.1.1. Technical requirements for the TI -- 10.2. Low latency in the Tactile Internet -- 10.2.1. Resource allocation -- 10.2.2. Mobile edge computing -- 10.2.3. Network coding -- 10.2.4. Haptic communication protocols -- 10.3. Intelligence and the Tactile Internet -- 10.4. Edge intelligent -- 10.5. Open issues -- 10.6. Conclusion -- 10.7. References -- List of Authors -- Index -- EULA. |
title | The Tactile Internet |
title_auth | The Tactile Internet |
title_exact_search | The Tactile Internet |
title_exact_search_txtP | The Tactile Internet |
title_full | The Tactile Internet coordinated by Tara Ali-Yahiya Wrya Monnet |
title_fullStr | The Tactile Internet coordinated by Tara Ali-Yahiya Wrya Monnet |
title_full_unstemmed | The Tactile Internet coordinated by Tara Ali-Yahiya Wrya Monnet |
title_short | The Tactile Internet |
title_sort | the tactile internet |
url | https://ieeexplore.ieee.org/book/9714892 |
work_keys_str_mv | AT aliyahiyatara thetactileinternet AT monnetwyra thetactileinternet |