Circular economy in the construction industry:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Schriftenreihe: | The circular economy in sustainable solid and liquid waste management
|
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xviii, 232 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000505214 9781003217619 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221290 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000505214 |9 978-1-00-050521-4 | ||
020 | |a 9781003217619 |9 978-1-003-21761-9 | ||
035 | |a (ZDB-30-PQE)EBC6810049 | ||
035 | |a (ZDB-30-PAD)EBC6810049 | ||
035 | |a (ZDB-89-EBL)EBL6810049 | ||
035 | |a (OCoLC)1287135009 | ||
035 | |a (DE-599)BVBBV048221290 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 690.0286 | |
084 | |a ARC 350 |2 stub | ||
245 | 1 | 0 | |a Circular economy in the construction industry |c edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xviii, 232 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The circular economy in sustainable solid and liquid waste management | |
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Acknowledgements -- Editors -- Contributors -- Part I: Sustainable Construction Practices and Circular Economy -- Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris -- 1.1 Introduction -- 1.2 Construction and Demolition Waste (C& -- D) Generation Including Disasters Debris -- 1.3 Management and Recycling -- 1.4 C& -- DW Legislation -- 1.5 Discussion, Analysis, and Conclusion -- Acknowledgement -- References -- Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research -- 2.1 Background -- 2.2 Introduction -- 2.3 Circular Economy and Construction Industry -- 2.4 Examples-Novel Construction Materials -- 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement -- 2.4.2 'Smart' Composites -- 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite -- 2.5 Summary and Discussion -- 2.6 Conclusions and Recommendations -- Acknowledgments -- Notes -- References -- Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures -- 3.1 Introduction -- 3.2 Industrial Slag -- 3.3 Self-Compacting Concrete -- 3.4 Experimental Program -- 3.4.1 Materials -- 3.4.2 Mix Design -- 3.5 Results and Discussions -- 3.5.1 Fresh Properties -- 3.5.1.1 Self-Compactability Properties -- 3.5.1.2 T 50 Flow Time and V-Funnel Time -- 3.5.2 Blocking Ratio (L-box test) -- 3.5.3 HRWR Demand -- 3.5.4 Hardened Properties -- 3.5.4.1 Compressive Strength -- 3.6 Conclusions -- References -- Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete -- 4.1 Introduction -- 4.2 Literature Review -- 4.3 Aim of the Study -- 4.4 Experimental Program -- 4.4.1 Materials | |
505 | 8 | |a 4.4.2 Mix Proportion -- 4.4.3 Specimens Preparation -- 4.5 Procedure -- 4.6 Results and Discussion -- 4.6.1 Compressive Strength -- 4.6.2 SEM and EDX Analysis -- 4.7 Conclusion -- References -- Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Materials and Methods -- 5.3.1 Cement -- 5.3.2 Aggregates -- 5.3.2.1 Fine Aggregate -- 5.3.2.2 Coarse Aggregate -- 5.3.2.3 Fly Ash -- 5.3.3 Mix Proportions -- 5.3.4 Preparation and Casting of Test Specimens -- 5.4 Test Results and Discussion -- 5.4.1 Fresh Properties -- 5.4.2 Compressive Strength -- 5.4.3 Split Tensile Strength -- 5.5 Conclusions -- References -- Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Methodology -- 6.4 Result and Discussions -- 6.4.1 Slump Test -- 6.4.2 Mechanical Properties -- 6.4.2.1 Compressive Strength -- 6.4.2.2 Split Tensile Strength -- 6.4.2.3 Flexural Strength -- 6.5 Effect of Elevated Temperature -- 6.5.1 Loss of Weight -- 6.5.2 Colour Change and Appearance -- 6.5.3 Compressive Strength -- 6.6 Effect of Elevated Temperature on Durability -- 6.6.1 Sorptivity at Elevated Temperatures -- 6.6.2 Water Absorption After Applying Elevated Temperature -- 6.7 Conclusions -- References -- Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Methodology -- 7.2.1 Materials -- 7.3 Experimental Procedure -- 7.3.1 Preparation of Paper Pulp -- 7.3.2 Fabrication of the Mold -- 7.3.3 Casting of Papercrete Cubes and Bricks -- 7.4 Testing and Results -- 7.5 Discussion -- 7.6 Conclusion -- Acknowledgement -- References -- IS Codes Referred | |
505 | 8 | |a Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results and Discussion -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam -- 9.1 Introduction -- 9.2 Study Site History -- 9.3 Materials and Methods -- 9.3.1 Sample Collection -- 9.3.2 Metal Extraction Procedure -- 9.3.3 Geo-Accumulation Index (I geo) -- 9.4 Results and Discussion -- 9.4.1 Lead -- 9.4.2 Nickel -- 9.4.3 I geo -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management -- 10.1 Introduction -- 10.2 Materials Properties -- 10.2.1 Cement -- 10.2.2 Aggregates -- 10.2.3 Sugar Cane Bagasse Ash -- 10.2.4 Marble Slurry Dust -- 10.3 Mixture Proportioning -- 10.4 Experimental Methodology -- 10.4.1 Test on Fresh Concrete -- 10.4.2 Test on Hardened Concrete and Mortar -- 10.4.3 Compressive Strength of Concrete -- 10.5 Experimental Results and Discussions -- 10.5.1 Workability of Fresh Concrete -- 10.5.2 Compressive Strength of Concrete -- 10.5.3 Compressive Strength of Mortar -- 10.6 Conclusions -- References -- Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review -- 11.1 Introduction -- 11.2 Fresh Property of Waste Materials -- 11.2.1 Workability of Industrial Waste -- 11.3 Mechanical Property -- 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete -- 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete -- 11.4 Conclusion -- References -- Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends | |
505 | 8 | |a 12.1 Introduction -- 12.2 Material and Methods -- 12.2.1 Oil Preparation Process -- 12.2.2 Biodiesel Properties -- 12.2.3 Experimental Procedure -- 12.3 Results and Discussions -- 12.3.1 Performance Analysis -- 12.3.2 Emission Analysis -- 12.4 Conclusions -- References -- Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction -- 13.1 Introduction -- 13.2 Materials and Methodology -- 13.2.1 Experimental Materials -- 13.2.2 Experimental Methodology -- 13.3 Results and Discussion -- 13.3.1 Development of Zypmite Product -- 13.3.1.1 Advantages of Zypmite Product -- 13.3.2 Phosphogypsum as Road Construction Material -- 13.3.2.1 Neutralisation of Phosphogypsum -- 13.4 Conclusion -- Acknowledgement -- References -- Part II: Waste Utilization and Soil Stabilization -- Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size -- 14.1 Introduction -- 14.2 Model Footing Test -- 14.3 Model Test Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria -- 15.1 Introduction -- 15.2 Experiment Investigations -- 15.2.1 Materials -- 15.2.1.1 Soil -- 15.2.1.2 Bacteria -- 15.3 Tests Conducted -- 15.3.1 Atterberg Limits -- 15.3.2 Unconfined Compression Strength Test -- 15.3.3 Soil Surface Morphology -- 15.3.4 pH Value -- 15.4 Test Results -- 15.5 Plasticity Characteristics -- 15.6 Strength -- 15.7 pH Value -- 15.8 Micro Studies -- 15.9 Conclusions -- References -- Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization -- 16.1 Introduction -- 16.2 Methodology -- 16.3 Atterberg Limits -- 16.4 Conclusion -- References -- Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Fly Ash | |
505 | 8 | |a 17.2.2 Use of Lime -- 17.2.3 SPSS and Cost Modeling -- 17.3 Specifications of IRC -- 17.3.1 Subgrade Soil -- 17.3.2 Liquid Limit -- 17.3.3 Plasticity Index -- 17.3.4 Density Requirement -- 17.3.5 CBR -- 17.4 Economic Analysis -- 17.5 Discussion and Conclusion -- References -- Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil -- 18.1 Introduction -- 18.2 Experimental Work -- 18.2.1 Methods Adopted -- 18.3 Tests Results and Discussion -- 18.4 Liquid Limit -- 18.5 Compressive Strength -- 18.6 Swelling Pressure @ OMC -- 18.7 Compression Index @ OMC -- 18.8 Compression Index @ LL -- 18.9 Conclusions -- References -- Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid -- 19.1 Introduction -- 19.2 Testing Materials -- 19.2.1 Bagasse Ash -- 19.3 Geogrid -- 19.4 Testing Methods -- 19.5 Results and Discussion -- 19.5.1 Direct Shear Test Results -- 19.6 Interface Shear Test Results -- 19.7 Friction Efficiency Factors (EФ) -- 19.8 Conclusion -- Acknowledgment -- References -- Part III: Sustainable Green Concrete -- Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate -- 20.1 Introduction -- 20.2 Materials and Method -- 20.2.1 Fly Ash -- 20.2.2 Fine Aggregates -- 20.2.3 Coarse Aggregate -- 20.2.4 Low-Density Aggregate -- 20.3 Alkaline Solutions -- 20.4 Mixing, Casting and Curing -- 20.5 Result and Discussion -- 20.5.1 Workability -- 20.5.2 Density ( ρ) -- 20.5.3 Compressive Strength (CS) -- 20.5.4 Split Tensile Strength -- 20.5.5 Flexural Strength -- 20.6 Conclusion -- References -- Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete -- 21.1 Introduction -- 21.2 Materials and Methods -- 21.2.1 Materials -- 21.2.2 Methods of Manufacturing Geopolymer Concrete -- 21.3 Results and Discussions -- 21.3.1 Workability -- 21.4 Compressive Strength | |
505 | 8 | |a 21.4.1 Effect of Source Materials and Extra Water | |
700 | 1 | |a Ghosh, Sadhan Kumar |0 (DE-588)1204845484 |4 edt | |
700 | 1 | |a Ghosh, Sannidhya Kumar |4 edt | |
700 | 1 | |a Mohapatra, Benu Gopal |4 edt | |
700 | 1 | |a Mersky, Ronald |0 (DE-588)170341712 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Ghosh, Sadhan Kumar |t Circular Economy in the Construction Industry |d Milton : Taylor & Francis Group,c2021 |n Druck-Ausgabe, Hardcover |z 978-1-032-10896-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-10897-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033602027 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6810049 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002150531072 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Ghosh, Sadhan Kumar Ghosh, Sannidhya Kumar Mohapatra, Benu Gopal Mersky, Ronald |
author2_role | edt edt edt edt |
author2_variant | s k g sk skg s k g sk skg b g m bg bgm r m rm |
author_GND | (DE-588)1204845484 (DE-588)170341712 |
author_facet | Ghosh, Sadhan Kumar Ghosh, Sannidhya Kumar Mohapatra, Benu Gopal Mersky, Ronald |
building | Verbundindex |
bvnumber | BV048221290 |
classification_tum | ARC 350 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Acknowledgements -- Editors -- Contributors -- Part I: Sustainable Construction Practices and Circular Economy -- Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris -- 1.1 Introduction -- 1.2 Construction and Demolition Waste (C& -- D) Generation Including Disasters Debris -- 1.3 Management and Recycling -- 1.4 C& -- DW Legislation -- 1.5 Discussion, Analysis, and Conclusion -- Acknowledgement -- References -- Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research -- 2.1 Background -- 2.2 Introduction -- 2.3 Circular Economy and Construction Industry -- 2.4 Examples-Novel Construction Materials -- 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement -- 2.4.2 'Smart' Composites -- 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite -- 2.5 Summary and Discussion -- 2.6 Conclusions and Recommendations -- Acknowledgments -- Notes -- References -- Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures -- 3.1 Introduction -- 3.2 Industrial Slag -- 3.3 Self-Compacting Concrete -- 3.4 Experimental Program -- 3.4.1 Materials -- 3.4.2 Mix Design -- 3.5 Results and Discussions -- 3.5.1 Fresh Properties -- 3.5.1.1 Self-Compactability Properties -- 3.5.1.2 T 50 Flow Time and V-Funnel Time -- 3.5.2 Blocking Ratio (L-box test) -- 3.5.3 HRWR Demand -- 3.5.4 Hardened Properties -- 3.5.4.1 Compressive Strength -- 3.6 Conclusions -- References -- Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete -- 4.1 Introduction -- 4.2 Literature Review -- 4.3 Aim of the Study -- 4.4 Experimental Program -- 4.4.1 Materials 4.4.2 Mix Proportion -- 4.4.3 Specimens Preparation -- 4.5 Procedure -- 4.6 Results and Discussion -- 4.6.1 Compressive Strength -- 4.6.2 SEM and EDX Analysis -- 4.7 Conclusion -- References -- Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Materials and Methods -- 5.3.1 Cement -- 5.3.2 Aggregates -- 5.3.2.1 Fine Aggregate -- 5.3.2.2 Coarse Aggregate -- 5.3.2.3 Fly Ash -- 5.3.3 Mix Proportions -- 5.3.4 Preparation and Casting of Test Specimens -- 5.4 Test Results and Discussion -- 5.4.1 Fresh Properties -- 5.4.2 Compressive Strength -- 5.4.3 Split Tensile Strength -- 5.5 Conclusions -- References -- Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Methodology -- 6.4 Result and Discussions -- 6.4.1 Slump Test -- 6.4.2 Mechanical Properties -- 6.4.2.1 Compressive Strength -- 6.4.2.2 Split Tensile Strength -- 6.4.2.3 Flexural Strength -- 6.5 Effect of Elevated Temperature -- 6.5.1 Loss of Weight -- 6.5.2 Colour Change and Appearance -- 6.5.3 Compressive Strength -- 6.6 Effect of Elevated Temperature on Durability -- 6.6.1 Sorptivity at Elevated Temperatures -- 6.6.2 Water Absorption After Applying Elevated Temperature -- 6.7 Conclusions -- References -- Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Methodology -- 7.2.1 Materials -- 7.3 Experimental Procedure -- 7.3.1 Preparation of Paper Pulp -- 7.3.2 Fabrication of the Mold -- 7.3.3 Casting of Papercrete Cubes and Bricks -- 7.4 Testing and Results -- 7.5 Discussion -- 7.6 Conclusion -- Acknowledgement -- References -- IS Codes Referred Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results and Discussion -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam -- 9.1 Introduction -- 9.2 Study Site History -- 9.3 Materials and Methods -- 9.3.1 Sample Collection -- 9.3.2 Metal Extraction Procedure -- 9.3.3 Geo-Accumulation Index (I geo) -- 9.4 Results and Discussion -- 9.4.1 Lead -- 9.4.2 Nickel -- 9.4.3 I geo -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management -- 10.1 Introduction -- 10.2 Materials Properties -- 10.2.1 Cement -- 10.2.2 Aggregates -- 10.2.3 Sugar Cane Bagasse Ash -- 10.2.4 Marble Slurry Dust -- 10.3 Mixture Proportioning -- 10.4 Experimental Methodology -- 10.4.1 Test on Fresh Concrete -- 10.4.2 Test on Hardened Concrete and Mortar -- 10.4.3 Compressive Strength of Concrete -- 10.5 Experimental Results and Discussions -- 10.5.1 Workability of Fresh Concrete -- 10.5.2 Compressive Strength of Concrete -- 10.5.3 Compressive Strength of Mortar -- 10.6 Conclusions -- References -- Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review -- 11.1 Introduction -- 11.2 Fresh Property of Waste Materials -- 11.2.1 Workability of Industrial Waste -- 11.3 Mechanical Property -- 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete -- 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete -- 11.4 Conclusion -- References -- Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends 12.1 Introduction -- 12.2 Material and Methods -- 12.2.1 Oil Preparation Process -- 12.2.2 Biodiesel Properties -- 12.2.3 Experimental Procedure -- 12.3 Results and Discussions -- 12.3.1 Performance Analysis -- 12.3.2 Emission Analysis -- 12.4 Conclusions -- References -- Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction -- 13.1 Introduction -- 13.2 Materials and Methodology -- 13.2.1 Experimental Materials -- 13.2.2 Experimental Methodology -- 13.3 Results and Discussion -- 13.3.1 Development of Zypmite Product -- 13.3.1.1 Advantages of Zypmite Product -- 13.3.2 Phosphogypsum as Road Construction Material -- 13.3.2.1 Neutralisation of Phosphogypsum -- 13.4 Conclusion -- Acknowledgement -- References -- Part II: Waste Utilization and Soil Stabilization -- Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size -- 14.1 Introduction -- 14.2 Model Footing Test -- 14.3 Model Test Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria -- 15.1 Introduction -- 15.2 Experiment Investigations -- 15.2.1 Materials -- 15.2.1.1 Soil -- 15.2.1.2 Bacteria -- 15.3 Tests Conducted -- 15.3.1 Atterberg Limits -- 15.3.2 Unconfined Compression Strength Test -- 15.3.3 Soil Surface Morphology -- 15.3.4 pH Value -- 15.4 Test Results -- 15.5 Plasticity Characteristics -- 15.6 Strength -- 15.7 pH Value -- 15.8 Micro Studies -- 15.9 Conclusions -- References -- Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization -- 16.1 Introduction -- 16.2 Methodology -- 16.3 Atterberg Limits -- 16.4 Conclusion -- References -- Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Fly Ash 17.2.2 Use of Lime -- 17.2.3 SPSS and Cost Modeling -- 17.3 Specifications of IRC -- 17.3.1 Subgrade Soil -- 17.3.2 Liquid Limit -- 17.3.3 Plasticity Index -- 17.3.4 Density Requirement -- 17.3.5 CBR -- 17.4 Economic Analysis -- 17.5 Discussion and Conclusion -- References -- Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil -- 18.1 Introduction -- 18.2 Experimental Work -- 18.2.1 Methods Adopted -- 18.3 Tests Results and Discussion -- 18.4 Liquid Limit -- 18.5 Compressive Strength -- 18.6 Swelling Pressure @ OMC -- 18.7 Compression Index @ OMC -- 18.8 Compression Index @ LL -- 18.9 Conclusions -- References -- Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid -- 19.1 Introduction -- 19.2 Testing Materials -- 19.2.1 Bagasse Ash -- 19.3 Geogrid -- 19.4 Testing Methods -- 19.5 Results and Discussion -- 19.5.1 Direct Shear Test Results -- 19.6 Interface Shear Test Results -- 19.7 Friction Efficiency Factors (EФ) -- 19.8 Conclusion -- Acknowledgment -- References -- Part III: Sustainable Green Concrete -- Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate -- 20.1 Introduction -- 20.2 Materials and Method -- 20.2.1 Fly Ash -- 20.2.2 Fine Aggregates -- 20.2.3 Coarse Aggregate -- 20.2.4 Low-Density Aggregate -- 20.3 Alkaline Solutions -- 20.4 Mixing, Casting and Curing -- 20.5 Result and Discussion -- 20.5.1 Workability -- 20.5.2 Density ( ρ) -- 20.5.3 Compressive Strength (CS) -- 20.5.4 Split Tensile Strength -- 20.5.5 Flexural Strength -- 20.6 Conclusion -- References -- Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete -- 21.1 Introduction -- 21.2 Materials and Methods -- 21.2.1 Materials -- 21.2.2 Methods of Manufacturing Geopolymer Concrete -- 21.3 Results and Discussions -- 21.3.1 Workability -- 21.4 Compressive Strength 21.4.1 Effect of Source Materials and Extra Water |
ctrlnum | (ZDB-30-PQE)EBC6810049 (ZDB-30-PAD)EBC6810049 (ZDB-89-EBL)EBL6810049 (OCoLC)1287135009 (DE-599)BVBBV048221290 |
dewey-full | 690.0286 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 690 - Construction of buildings |
dewey-raw | 690.0286 |
dewey-search | 690.0286 |
dewey-sort | 3690.0286 |
dewey-tens | 690 - Construction of buildings |
discipline | Architektur Bauingenieurwesen |
discipline_str_mv | Architektur Bauingenieurwesen |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11291nmm a2200517zc 4500</leader><controlfield tag="001">BV048221290</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000505214</subfield><subfield code="9">978-1-00-050521-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003217619</subfield><subfield code="9">978-1-003-21761-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6810049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6810049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6810049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1287135009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221290</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690.0286</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ARC 350</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circular economy in the construction industry</subfield><subfield code="c">edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 232 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The circular economy in sustainable solid and liquid waste management</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Acknowledgements -- Editors -- Contributors -- Part I: Sustainable Construction Practices and Circular Economy -- Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris -- 1.1 Introduction -- 1.2 Construction and Demolition Waste (C&amp -- D) Generation Including Disasters Debris -- 1.3 Management and Recycling -- 1.4 C&amp -- DW Legislation -- 1.5 Discussion, Analysis, and Conclusion -- Acknowledgement -- References -- Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research -- 2.1 Background -- 2.2 Introduction -- 2.3 Circular Economy and Construction Industry -- 2.4 Examples-Novel Construction Materials -- 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement -- 2.4.2 'Smart' Composites -- 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite -- 2.5 Summary and Discussion -- 2.6 Conclusions and Recommendations -- Acknowledgments -- Notes -- References -- Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures -- 3.1 Introduction -- 3.2 Industrial Slag -- 3.3 Self-Compacting Concrete -- 3.4 Experimental Program -- 3.4.1 Materials -- 3.4.2 Mix Design -- 3.5 Results and Discussions -- 3.5.1 Fresh Properties -- 3.5.1.1 Self-Compactability Properties -- 3.5.1.2 T 50 Flow Time and V-Funnel Time -- 3.5.2 Blocking Ratio (L-box test) -- 3.5.3 HRWR Demand -- 3.5.4 Hardened Properties -- 3.5.4.1 Compressive Strength -- 3.6 Conclusions -- References -- Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete -- 4.1 Introduction -- 4.2 Literature Review -- 4.3 Aim of the Study -- 4.4 Experimental Program -- 4.4.1 Materials</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.2 Mix Proportion -- 4.4.3 Specimens Preparation -- 4.5 Procedure -- 4.6 Results and Discussion -- 4.6.1 Compressive Strength -- 4.6.2 SEM and EDX Analysis -- 4.7 Conclusion -- References -- Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Materials and Methods -- 5.3.1 Cement -- 5.3.2 Aggregates -- 5.3.2.1 Fine Aggregate -- 5.3.2.2 Coarse Aggregate -- 5.3.2.3 Fly Ash -- 5.3.3 Mix Proportions -- 5.3.4 Preparation and Casting of Test Specimens -- 5.4 Test Results and Discussion -- 5.4.1 Fresh Properties -- 5.4.2 Compressive Strength -- 5.4.3 Split Tensile Strength -- 5.5 Conclusions -- References -- Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Methodology -- 6.4 Result and Discussions -- 6.4.1 Slump Test -- 6.4.2 Mechanical Properties -- 6.4.2.1 Compressive Strength -- 6.4.2.2 Split Tensile Strength -- 6.4.2.3 Flexural Strength -- 6.5 Effect of Elevated Temperature -- 6.5.1 Loss of Weight -- 6.5.2 Colour Change and Appearance -- 6.5.3 Compressive Strength -- 6.6 Effect of Elevated Temperature on Durability -- 6.6.1 Sorptivity at Elevated Temperatures -- 6.6.2 Water Absorption After Applying Elevated Temperature -- 6.7 Conclusions -- References -- Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Methodology -- 7.2.1 Materials -- 7.3 Experimental Procedure -- 7.3.1 Preparation of Paper Pulp -- 7.3.2 Fabrication of the Mold -- 7.3.3 Casting of Papercrete Cubes and Bricks -- 7.4 Testing and Results -- 7.5 Discussion -- 7.6 Conclusion -- Acknowledgement -- References -- IS Codes Referred</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results and Discussion -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam -- 9.1 Introduction -- 9.2 Study Site History -- 9.3 Materials and Methods -- 9.3.1 Sample Collection -- 9.3.2 Metal Extraction Procedure -- 9.3.3 Geo-Accumulation Index (I geo) -- 9.4 Results and Discussion -- 9.4.1 Lead -- 9.4.2 Nickel -- 9.4.3 I geo -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management -- 10.1 Introduction -- 10.2 Materials Properties -- 10.2.1 Cement -- 10.2.2 Aggregates -- 10.2.3 Sugar Cane Bagasse Ash -- 10.2.4 Marble Slurry Dust -- 10.3 Mixture Proportioning -- 10.4 Experimental Methodology -- 10.4.1 Test on Fresh Concrete -- 10.4.2 Test on Hardened Concrete and Mortar -- 10.4.3 Compressive Strength of Concrete -- 10.5 Experimental Results and Discussions -- 10.5.1 Workability of Fresh Concrete -- 10.5.2 Compressive Strength of Concrete -- 10.5.3 Compressive Strength of Mortar -- 10.6 Conclusions -- References -- Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review -- 11.1 Introduction -- 11.2 Fresh Property of Waste Materials -- 11.2.1 Workability of Industrial Waste -- 11.3 Mechanical Property -- 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete -- 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete -- 11.4 Conclusion -- References -- Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.1 Introduction -- 12.2 Material and Methods -- 12.2.1 Oil Preparation Process -- 12.2.2 Biodiesel Properties -- 12.2.3 Experimental Procedure -- 12.3 Results and Discussions -- 12.3.1 Performance Analysis -- 12.3.2 Emission Analysis -- 12.4 Conclusions -- References -- Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction -- 13.1 Introduction -- 13.2 Materials and Methodology -- 13.2.1 Experimental Materials -- 13.2.2 Experimental Methodology -- 13.3 Results and Discussion -- 13.3.1 Development of Zypmite Product -- 13.3.1.1 Advantages of Zypmite Product -- 13.3.2 Phosphogypsum as Road Construction Material -- 13.3.2.1 Neutralisation of Phosphogypsum -- 13.4 Conclusion -- Acknowledgement -- References -- Part II: Waste Utilization and Soil Stabilization -- Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size -- 14.1 Introduction -- 14.2 Model Footing Test -- 14.3 Model Test Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria -- 15.1 Introduction -- 15.2 Experiment Investigations -- 15.2.1 Materials -- 15.2.1.1 Soil -- 15.2.1.2 Bacteria -- 15.3 Tests Conducted -- 15.3.1 Atterberg Limits -- 15.3.2 Unconfined Compression Strength Test -- 15.3.3 Soil Surface Morphology -- 15.3.4 pH Value -- 15.4 Test Results -- 15.5 Plasticity Characteristics -- 15.6 Strength -- 15.7 pH Value -- 15.8 Micro Studies -- 15.9 Conclusions -- References -- Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization -- 16.1 Introduction -- 16.2 Methodology -- 16.3 Atterberg Limits -- 16.4 Conclusion -- References -- Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Fly Ash</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">17.2.2 Use of Lime -- 17.2.3 SPSS and Cost Modeling -- 17.3 Specifications of IRC -- 17.3.1 Subgrade Soil -- 17.3.2 Liquid Limit -- 17.3.3 Plasticity Index -- 17.3.4 Density Requirement -- 17.3.5 CBR -- 17.4 Economic Analysis -- 17.5 Discussion and Conclusion -- References -- Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil -- 18.1 Introduction -- 18.2 Experimental Work -- 18.2.1 Methods Adopted -- 18.3 Tests Results and Discussion -- 18.4 Liquid Limit -- 18.5 Compressive Strength -- 18.6 Swelling Pressure @ OMC -- 18.7 Compression Index @ OMC -- 18.8 Compression Index @ LL -- 18.9 Conclusions -- References -- Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid -- 19.1 Introduction -- 19.2 Testing Materials -- 19.2.1 Bagasse Ash -- 19.3 Geogrid -- 19.4 Testing Methods -- 19.5 Results and Discussion -- 19.5.1 Direct Shear Test Results -- 19.6 Interface Shear Test Results -- 19.7 Friction Efficiency Factors (EФ) -- 19.8 Conclusion -- Acknowledgment -- References -- Part III: Sustainable Green Concrete -- Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate -- 20.1 Introduction -- 20.2 Materials and Method -- 20.2.1 Fly Ash -- 20.2.2 Fine Aggregates -- 20.2.3 Coarse Aggregate -- 20.2.4 Low-Density Aggregate -- 20.3 Alkaline Solutions -- 20.4 Mixing, Casting and Curing -- 20.5 Result and Discussion -- 20.5.1 Workability -- 20.5.2 Density ( ρ) -- 20.5.3 Compressive Strength (CS) -- 20.5.4 Split Tensile Strength -- 20.5.5 Flexural Strength -- 20.6 Conclusion -- References -- Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete -- 21.1 Introduction -- 21.2 Materials and Methods -- 21.2.1 Materials -- 21.2.2 Methods of Manufacturing Geopolymer Concrete -- 21.3 Results and Discussions -- 21.3.1 Workability -- 21.4 Compressive Strength</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">21.4.1 Effect of Source Materials and Extra Water</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Sadhan Kumar</subfield><subfield code="0">(DE-588)1204845484</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Sannidhya Kumar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohapatra, Benu Gopal</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mersky, Ronald</subfield><subfield code="0">(DE-588)170341712</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Ghosh, Sadhan Kumar</subfield><subfield code="t">Circular Economy in the Construction Industry</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-032-10896-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-10897-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602027</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6810049</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221290 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781000505214 9781003217619 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602027 |
oclc_num | 1287135009 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 232 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
series2 | The circular economy in sustainable solid and liquid waste management |
spelling | Circular economy in the construction industry edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky First edition Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (xviii, 232 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier The circular economy in sustainable solid and liquid waste management Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Acknowledgements -- Editors -- Contributors -- Part I: Sustainable Construction Practices and Circular Economy -- Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris -- 1.1 Introduction -- 1.2 Construction and Demolition Waste (C& -- D) Generation Including Disasters Debris -- 1.3 Management and Recycling -- 1.4 C& -- DW Legislation -- 1.5 Discussion, Analysis, and Conclusion -- Acknowledgement -- References -- Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research -- 2.1 Background -- 2.2 Introduction -- 2.3 Circular Economy and Construction Industry -- 2.4 Examples-Novel Construction Materials -- 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement -- 2.4.2 'Smart' Composites -- 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite -- 2.5 Summary and Discussion -- 2.6 Conclusions and Recommendations -- Acknowledgments -- Notes -- References -- Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures -- 3.1 Introduction -- 3.2 Industrial Slag -- 3.3 Self-Compacting Concrete -- 3.4 Experimental Program -- 3.4.1 Materials -- 3.4.2 Mix Design -- 3.5 Results and Discussions -- 3.5.1 Fresh Properties -- 3.5.1.1 Self-Compactability Properties -- 3.5.1.2 T 50 Flow Time and V-Funnel Time -- 3.5.2 Blocking Ratio (L-box test) -- 3.5.3 HRWR Demand -- 3.5.4 Hardened Properties -- 3.5.4.1 Compressive Strength -- 3.6 Conclusions -- References -- Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete -- 4.1 Introduction -- 4.2 Literature Review -- 4.3 Aim of the Study -- 4.4 Experimental Program -- 4.4.1 Materials 4.4.2 Mix Proportion -- 4.4.3 Specimens Preparation -- 4.5 Procedure -- 4.6 Results and Discussion -- 4.6.1 Compressive Strength -- 4.6.2 SEM and EDX Analysis -- 4.7 Conclusion -- References -- Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Materials and Methods -- 5.3.1 Cement -- 5.3.2 Aggregates -- 5.3.2.1 Fine Aggregate -- 5.3.2.2 Coarse Aggregate -- 5.3.2.3 Fly Ash -- 5.3.3 Mix Proportions -- 5.3.4 Preparation and Casting of Test Specimens -- 5.4 Test Results and Discussion -- 5.4.1 Fresh Properties -- 5.4.2 Compressive Strength -- 5.4.3 Split Tensile Strength -- 5.5 Conclusions -- References -- Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Methodology -- 6.4 Result and Discussions -- 6.4.1 Slump Test -- 6.4.2 Mechanical Properties -- 6.4.2.1 Compressive Strength -- 6.4.2.2 Split Tensile Strength -- 6.4.2.3 Flexural Strength -- 6.5 Effect of Elevated Temperature -- 6.5.1 Loss of Weight -- 6.5.2 Colour Change and Appearance -- 6.5.3 Compressive Strength -- 6.6 Effect of Elevated Temperature on Durability -- 6.6.1 Sorptivity at Elevated Temperatures -- 6.6.2 Water Absorption After Applying Elevated Temperature -- 6.7 Conclusions -- References -- Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Methodology -- 7.2.1 Materials -- 7.3 Experimental Procedure -- 7.3.1 Preparation of Paper Pulp -- 7.3.2 Fabrication of the Mold -- 7.3.3 Casting of Papercrete Cubes and Bricks -- 7.4 Testing and Results -- 7.5 Discussion -- 7.6 Conclusion -- Acknowledgement -- References -- IS Codes Referred Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results and Discussion -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam -- 9.1 Introduction -- 9.2 Study Site History -- 9.3 Materials and Methods -- 9.3.1 Sample Collection -- 9.3.2 Metal Extraction Procedure -- 9.3.3 Geo-Accumulation Index (I geo) -- 9.4 Results and Discussion -- 9.4.1 Lead -- 9.4.2 Nickel -- 9.4.3 I geo -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management -- 10.1 Introduction -- 10.2 Materials Properties -- 10.2.1 Cement -- 10.2.2 Aggregates -- 10.2.3 Sugar Cane Bagasse Ash -- 10.2.4 Marble Slurry Dust -- 10.3 Mixture Proportioning -- 10.4 Experimental Methodology -- 10.4.1 Test on Fresh Concrete -- 10.4.2 Test on Hardened Concrete and Mortar -- 10.4.3 Compressive Strength of Concrete -- 10.5 Experimental Results and Discussions -- 10.5.1 Workability of Fresh Concrete -- 10.5.2 Compressive Strength of Concrete -- 10.5.3 Compressive Strength of Mortar -- 10.6 Conclusions -- References -- Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review -- 11.1 Introduction -- 11.2 Fresh Property of Waste Materials -- 11.2.1 Workability of Industrial Waste -- 11.3 Mechanical Property -- 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete -- 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete -- 11.4 Conclusion -- References -- Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends 12.1 Introduction -- 12.2 Material and Methods -- 12.2.1 Oil Preparation Process -- 12.2.2 Biodiesel Properties -- 12.2.3 Experimental Procedure -- 12.3 Results and Discussions -- 12.3.1 Performance Analysis -- 12.3.2 Emission Analysis -- 12.4 Conclusions -- References -- Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction -- 13.1 Introduction -- 13.2 Materials and Methodology -- 13.2.1 Experimental Materials -- 13.2.2 Experimental Methodology -- 13.3 Results and Discussion -- 13.3.1 Development of Zypmite Product -- 13.3.1.1 Advantages of Zypmite Product -- 13.3.2 Phosphogypsum as Road Construction Material -- 13.3.2.1 Neutralisation of Phosphogypsum -- 13.4 Conclusion -- Acknowledgement -- References -- Part II: Waste Utilization and Soil Stabilization -- Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size -- 14.1 Introduction -- 14.2 Model Footing Test -- 14.3 Model Test Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria -- 15.1 Introduction -- 15.2 Experiment Investigations -- 15.2.1 Materials -- 15.2.1.1 Soil -- 15.2.1.2 Bacteria -- 15.3 Tests Conducted -- 15.3.1 Atterberg Limits -- 15.3.2 Unconfined Compression Strength Test -- 15.3.3 Soil Surface Morphology -- 15.3.4 pH Value -- 15.4 Test Results -- 15.5 Plasticity Characteristics -- 15.6 Strength -- 15.7 pH Value -- 15.8 Micro Studies -- 15.9 Conclusions -- References -- Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization -- 16.1 Introduction -- 16.2 Methodology -- 16.3 Atterberg Limits -- 16.4 Conclusion -- References -- Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Fly Ash 17.2.2 Use of Lime -- 17.2.3 SPSS and Cost Modeling -- 17.3 Specifications of IRC -- 17.3.1 Subgrade Soil -- 17.3.2 Liquid Limit -- 17.3.3 Plasticity Index -- 17.3.4 Density Requirement -- 17.3.5 CBR -- 17.4 Economic Analysis -- 17.5 Discussion and Conclusion -- References -- Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil -- 18.1 Introduction -- 18.2 Experimental Work -- 18.2.1 Methods Adopted -- 18.3 Tests Results and Discussion -- 18.4 Liquid Limit -- 18.5 Compressive Strength -- 18.6 Swelling Pressure @ OMC -- 18.7 Compression Index @ OMC -- 18.8 Compression Index @ LL -- 18.9 Conclusions -- References -- Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid -- 19.1 Introduction -- 19.2 Testing Materials -- 19.2.1 Bagasse Ash -- 19.3 Geogrid -- 19.4 Testing Methods -- 19.5 Results and Discussion -- 19.5.1 Direct Shear Test Results -- 19.6 Interface Shear Test Results -- 19.7 Friction Efficiency Factors (EФ) -- 19.8 Conclusion -- Acknowledgment -- References -- Part III: Sustainable Green Concrete -- Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate -- 20.1 Introduction -- 20.2 Materials and Method -- 20.2.1 Fly Ash -- 20.2.2 Fine Aggregates -- 20.2.3 Coarse Aggregate -- 20.2.4 Low-Density Aggregate -- 20.3 Alkaline Solutions -- 20.4 Mixing, Casting and Curing -- 20.5 Result and Discussion -- 20.5.1 Workability -- 20.5.2 Density ( ρ) -- 20.5.3 Compressive Strength (CS) -- 20.5.4 Split Tensile Strength -- 20.5.5 Flexural Strength -- 20.6 Conclusion -- References -- Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete -- 21.1 Introduction -- 21.2 Materials and Methods -- 21.2.1 Materials -- 21.2.2 Methods of Manufacturing Geopolymer Concrete -- 21.3 Results and Discussions -- 21.3.1 Workability -- 21.4 Compressive Strength 21.4.1 Effect of Source Materials and Extra Water Ghosh, Sadhan Kumar (DE-588)1204845484 edt Ghosh, Sannidhya Kumar edt Mohapatra, Benu Gopal edt Mersky, Ronald (DE-588)170341712 edt Erscheint auch als Ghosh, Sadhan Kumar Circular Economy in the Construction Industry Milton : Taylor & Francis Group,c2021 Druck-Ausgabe, Hardcover 978-1-032-10896-4 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-10897-1 |
spellingShingle | Circular economy in the construction industry Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Acknowledgements -- Editors -- Contributors -- Part I: Sustainable Construction Practices and Circular Economy -- Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris -- 1.1 Introduction -- 1.2 Construction and Demolition Waste (C& -- D) Generation Including Disasters Debris -- 1.3 Management and Recycling -- 1.4 C& -- DW Legislation -- 1.5 Discussion, Analysis, and Conclusion -- Acknowledgement -- References -- Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research -- 2.1 Background -- 2.2 Introduction -- 2.3 Circular Economy and Construction Industry -- 2.4 Examples-Novel Construction Materials -- 2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement -- 2.4.2 'Smart' Composites -- 2.4.3 Recycled PET Fibre Reinforced Cementitious Composite -- 2.5 Summary and Discussion -- 2.6 Conclusions and Recommendations -- Acknowledgments -- Notes -- References -- Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures -- 3.1 Introduction -- 3.2 Industrial Slag -- 3.3 Self-Compacting Concrete -- 3.4 Experimental Program -- 3.4.1 Materials -- 3.4.2 Mix Design -- 3.5 Results and Discussions -- 3.5.1 Fresh Properties -- 3.5.1.1 Self-Compactability Properties -- 3.5.1.2 T 50 Flow Time and V-Funnel Time -- 3.5.2 Blocking Ratio (L-box test) -- 3.5.3 HRWR Demand -- 3.5.4 Hardened Properties -- 3.5.4.1 Compressive Strength -- 3.6 Conclusions -- References -- Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete -- 4.1 Introduction -- 4.2 Literature Review -- 4.3 Aim of the Study -- 4.4 Experimental Program -- 4.4.1 Materials 4.4.2 Mix Proportion -- 4.4.3 Specimens Preparation -- 4.5 Procedure -- 4.6 Results and Discussion -- 4.6.1 Compressive Strength -- 4.6.2 SEM and EDX Analysis -- 4.7 Conclusion -- References -- Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Materials and Methods -- 5.3.1 Cement -- 5.3.2 Aggregates -- 5.3.2.1 Fine Aggregate -- 5.3.2.2 Coarse Aggregate -- 5.3.2.3 Fly Ash -- 5.3.3 Mix Proportions -- 5.3.4 Preparation and Casting of Test Specimens -- 5.4 Test Results and Discussion -- 5.4.1 Fresh Properties -- 5.4.2 Compressive Strength -- 5.4.3 Split Tensile Strength -- 5.5 Conclusions -- References -- Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Methodology -- 6.4 Result and Discussions -- 6.4.1 Slump Test -- 6.4.2 Mechanical Properties -- 6.4.2.1 Compressive Strength -- 6.4.2.2 Split Tensile Strength -- 6.4.2.3 Flexural Strength -- 6.5 Effect of Elevated Temperature -- 6.5.1 Loss of Weight -- 6.5.2 Colour Change and Appearance -- 6.5.3 Compressive Strength -- 6.6 Effect of Elevated Temperature on Durability -- 6.6.1 Sorptivity at Elevated Temperatures -- 6.6.2 Water Absorption After Applying Elevated Temperature -- 6.7 Conclusions -- References -- Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Methodology -- 7.2.1 Materials -- 7.3 Experimental Procedure -- 7.3.1 Preparation of Paper Pulp -- 7.3.2 Fabrication of the Mold -- 7.3.3 Casting of Papercrete Cubes and Bricks -- 7.4 Testing and Results -- 7.5 Discussion -- 7.6 Conclusion -- Acknowledgement -- References -- IS Codes Referred Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results and Discussion -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam -- 9.1 Introduction -- 9.2 Study Site History -- 9.3 Materials and Methods -- 9.3.1 Sample Collection -- 9.3.2 Metal Extraction Procedure -- 9.3.3 Geo-Accumulation Index (I geo) -- 9.4 Results and Discussion -- 9.4.1 Lead -- 9.4.2 Nickel -- 9.4.3 I geo -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management -- 10.1 Introduction -- 10.2 Materials Properties -- 10.2.1 Cement -- 10.2.2 Aggregates -- 10.2.3 Sugar Cane Bagasse Ash -- 10.2.4 Marble Slurry Dust -- 10.3 Mixture Proportioning -- 10.4 Experimental Methodology -- 10.4.1 Test on Fresh Concrete -- 10.4.2 Test on Hardened Concrete and Mortar -- 10.4.3 Compressive Strength of Concrete -- 10.5 Experimental Results and Discussions -- 10.5.1 Workability of Fresh Concrete -- 10.5.2 Compressive Strength of Concrete -- 10.5.3 Compressive Strength of Mortar -- 10.6 Conclusions -- References -- Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review -- 11.1 Introduction -- 11.2 Fresh Property of Waste Materials -- 11.2.1 Workability of Industrial Waste -- 11.3 Mechanical Property -- 11.3.1 Effect of Waste Materials on Compressive Strength of Concrete -- 11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete -- 11.4 Conclusion -- References -- Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends 12.1 Introduction -- 12.2 Material and Methods -- 12.2.1 Oil Preparation Process -- 12.2.2 Biodiesel Properties -- 12.2.3 Experimental Procedure -- 12.3 Results and Discussions -- 12.3.1 Performance Analysis -- 12.3.2 Emission Analysis -- 12.4 Conclusions -- References -- Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction -- 13.1 Introduction -- 13.2 Materials and Methodology -- 13.2.1 Experimental Materials -- 13.2.2 Experimental Methodology -- 13.3 Results and Discussion -- 13.3.1 Development of Zypmite Product -- 13.3.1.1 Advantages of Zypmite Product -- 13.3.2 Phosphogypsum as Road Construction Material -- 13.3.2.1 Neutralisation of Phosphogypsum -- 13.4 Conclusion -- Acknowledgement -- References -- Part II: Waste Utilization and Soil Stabilization -- Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size -- 14.1 Introduction -- 14.2 Model Footing Test -- 14.3 Model Test Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria -- 15.1 Introduction -- 15.2 Experiment Investigations -- 15.2.1 Materials -- 15.2.1.1 Soil -- 15.2.1.2 Bacteria -- 15.3 Tests Conducted -- 15.3.1 Atterberg Limits -- 15.3.2 Unconfined Compression Strength Test -- 15.3.3 Soil Surface Morphology -- 15.3.4 pH Value -- 15.4 Test Results -- 15.5 Plasticity Characteristics -- 15.6 Strength -- 15.7 pH Value -- 15.8 Micro Studies -- 15.9 Conclusions -- References -- Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization -- 16.1 Introduction -- 16.2 Methodology -- 16.3 Atterberg Limits -- 16.4 Conclusion -- References -- Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Fly Ash 17.2.2 Use of Lime -- 17.2.3 SPSS and Cost Modeling -- 17.3 Specifications of IRC -- 17.3.1 Subgrade Soil -- 17.3.2 Liquid Limit -- 17.3.3 Plasticity Index -- 17.3.4 Density Requirement -- 17.3.5 CBR -- 17.4 Economic Analysis -- 17.5 Discussion and Conclusion -- References -- Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil -- 18.1 Introduction -- 18.2 Experimental Work -- 18.2.1 Methods Adopted -- 18.3 Tests Results and Discussion -- 18.4 Liquid Limit -- 18.5 Compressive Strength -- 18.6 Swelling Pressure @ OMC -- 18.7 Compression Index @ OMC -- 18.8 Compression Index @ LL -- 18.9 Conclusions -- References -- Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid -- 19.1 Introduction -- 19.2 Testing Materials -- 19.2.1 Bagasse Ash -- 19.3 Geogrid -- 19.4 Testing Methods -- 19.5 Results and Discussion -- 19.5.1 Direct Shear Test Results -- 19.6 Interface Shear Test Results -- 19.7 Friction Efficiency Factors (EФ) -- 19.8 Conclusion -- Acknowledgment -- References -- Part III: Sustainable Green Concrete -- Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate -- 20.1 Introduction -- 20.2 Materials and Method -- 20.2.1 Fly Ash -- 20.2.2 Fine Aggregates -- 20.2.3 Coarse Aggregate -- 20.2.4 Low-Density Aggregate -- 20.3 Alkaline Solutions -- 20.4 Mixing, Casting and Curing -- 20.5 Result and Discussion -- 20.5.1 Workability -- 20.5.2 Density ( ρ) -- 20.5.3 Compressive Strength (CS) -- 20.5.4 Split Tensile Strength -- 20.5.5 Flexural Strength -- 20.6 Conclusion -- References -- Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete -- 21.1 Introduction -- 21.2 Materials and Methods -- 21.2.1 Materials -- 21.2.2 Methods of Manufacturing Geopolymer Concrete -- 21.3 Results and Discussions -- 21.3.1 Workability -- 21.4 Compressive Strength 21.4.1 Effect of Source Materials and Extra Water |
title | Circular economy in the construction industry |
title_auth | Circular economy in the construction industry |
title_exact_search | Circular economy in the construction industry |
title_exact_search_txtP | Circular economy in the construction industry |
title_full | Circular economy in the construction industry edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky |
title_fullStr | Circular economy in the construction industry edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky |
title_full_unstemmed | Circular economy in the construction industry edited by Sadhan Kumar Ghosh, Sannidhya Kumar Ghosh, Benu Gopal Mohapatra, Ronald L. Mersky |
title_short | Circular economy in the construction industry |
title_sort | circular economy in the construction industry |
work_keys_str_mv | AT ghoshsadhankumar circulareconomyintheconstructionindustry AT ghoshsannidhyakumar circulareconomyintheconstructionindustry AT mohapatrabenugopal circulareconomyintheconstructionindustry AT merskyronald circulareconomyintheconstructionindustry |