Megacity mobility: integrated urban transportation development and management
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiii, 229 Seiten) Illustrationen, Diagramme, Karten |
ISBN: | 9781000518207 9780429345432 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221124 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000518207 |9 978-1-00-051820-7 | ||
020 | |a 9780429345432 |9 978-0-429-34543-2 | ||
035 | |a (ZDB-30-PQE)EBC6799003 | ||
035 | |a (ZDB-30-PAD)EBC6799003 | ||
035 | |a (ZDB-89-EBL)EBL6799003 | ||
035 | |a (OCoLC)1285165103 | ||
035 | |a (DE-599)BVBBV048221124 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a BAU 850 |2 stub | ||
084 | |a RPL 860 |2 stub | ||
100 | 1 | |a Li, Zongzhi |e Verfasser |0 (DE-588)137214944 |4 aut | |
245 | 1 | 0 | |a Megacity mobility |b integrated urban transportation development and management |c Zongzhi Li, Adrian T. Moore, Samuel R. Staley |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxiii, 229 Seiten) |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion | |
505 | 8 | |a 4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles | |
505 | 8 | |a 4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General | |
505 | 8 | |a 6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing | |
505 | 8 | |a 7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues | |
505 | 8 | |a 8.9.1.1 Strategic challenges | |
700 | 1 | |a Moore, Adrian T. |d 1962- |e Verfasser |0 (DE-588)171703650 |4 aut | |
700 | 1 | |a Staley, Sam |d 1961- |e Sonstige |0 (DE-588)171504569 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-367-36358-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-18189-9 |
776 | 0 | 8 | |i Erscheint auch als |a Li, Zongzhi |t Megacity Mobility |d Milton : Taylor & Francis Group,c2022 |n Druck-Ausgabe |z 978-0-367-36359-8 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601863 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6799003 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002057207808 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Li, Zongzhi Moore, Adrian T. 1962- |
author_GND | (DE-588)137214944 (DE-588)171703650 (DE-588)171504569 |
author_facet | Li, Zongzhi Moore, Adrian T. 1962- |
author_role | aut aut |
author_sort | Li, Zongzhi |
author_variant | z l zl a t m at atm |
building | Verbundindex |
bvnumber | BV048221124 |
classification_tum | BAU 850 RPL 860 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion 4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles 4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General 6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing 7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues 8.9.1.1 Strategic challenges |
ctrlnum | (ZDB-30-PQE)EBC6799003 (ZDB-30-PAD)EBC6799003 (ZDB-89-EBL)EBL6799003 (OCoLC)1285165103 (DE-599)BVBBV048221124 |
discipline | Bauingenieurwesen Raumplanung Verkehrstechnik |
discipline_str_mv | Bauingenieurwesen Raumplanung Verkehrstechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11310nmm a2200517zc 4500</leader><controlfield tag="001">BV048221124</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000518207</subfield><subfield code="9">978-1-00-051820-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429345432</subfield><subfield code="9">978-0-429-34543-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6799003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6799003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6799003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1285165103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221124</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 850</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RPL 860</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zongzhi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137214944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Megacity mobility</subfield><subfield code="b">integrated urban transportation development and management</subfield><subfield code="c">Zongzhi Li, Adrian T. Moore, Samuel R. Staley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 229 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.9.1.1 Strategic challenges</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, Adrian T.</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171703650</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Staley, Sam</subfield><subfield code="d">1961-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)171504569</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-36358-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-18189-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Li, Zongzhi</subfield><subfield code="t">Megacity Mobility</subfield><subfield code="d">Milton : Taylor & Francis Group,c2022</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-367-36359-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601863</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6799003</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221124 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781000518207 9780429345432 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601863 |
oclc_num | 1285165103 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxiii, 229 Seiten) Illustrationen, Diagramme, Karten |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spelling | Li, Zongzhi Verfasser (DE-588)137214944 aut Megacity mobility integrated urban transportation development and management Zongzhi Li, Adrian T. Moore, Samuel R. Staley First edition Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (xxiii, 229 Seiten) Illustrationen, Diagramme, Karten txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion 4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles 4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General 6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing 7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues 8.9.1.1 Strategic challenges Moore, Adrian T. 1962- Verfasser (DE-588)171703650 aut Staley, Sam 1961- Sonstige (DE-588)171504569 oth Erscheint auch als Druck-Ausgabe, Hardcover 978-0-367-36358-1 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-18189-9 Erscheint auch als Li, Zongzhi Megacity Mobility Milton : Taylor & Francis Group,c2022 Druck-Ausgabe 978-0-367-36359-8 |
spellingShingle | Li, Zongzhi Moore, Adrian T. 1962- Megacity mobility integrated urban transportation development and management Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion 4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles 4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General 6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing 7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues 8.9.1.1 Strategic challenges |
title | Megacity mobility integrated urban transportation development and management |
title_auth | Megacity mobility integrated urban transportation development and management |
title_exact_search | Megacity mobility integrated urban transportation development and management |
title_exact_search_txtP | Megacity mobility integrated urban transportation development and management |
title_full | Megacity mobility integrated urban transportation development and management Zongzhi Li, Adrian T. Moore, Samuel R. Staley |
title_fullStr | Megacity mobility integrated urban transportation development and management Zongzhi Li, Adrian T. Moore, Samuel R. Staley |
title_full_unstemmed | Megacity mobility integrated urban transportation development and management Zongzhi Li, Adrian T. Moore, Samuel R. Staley |
title_short | Megacity mobility |
title_sort | megacity mobility integrated urban transportation development and management |
title_sub | integrated urban transportation development and management |
work_keys_str_mv | AT lizongzhi megacitymobilityintegratedurbantransportationdevelopmentandmanagement AT mooreadriant megacitymobilityintegratedurbantransportationdevelopmentandmanagement AT staleysam megacitymobilityintegratedurbantransportationdevelopmentandmanagement |