Electrical Safety Engineering of Renewable Energy Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2022
|
Schriftenreihe: | IEEE Press Ser
|
Schlagworte: | |
Online-Zugang: | DE-573 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (288 Seiten) |
ISBN: | 9781119624998 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221053 | ||
003 | DE-604 | ||
005 | 20230217 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119624998 |9 978-1-119-62499-8 | ||
035 | |a (ZDB-30-PQE)EBC6795935 | ||
035 | |a (ZDB-30-PAD)EBC6795935 | ||
035 | |a (ZDB-89-EBL)EBL6795935 | ||
035 | |a (OCoLC)1285168413 | ||
035 | |a (DE-599)BVBBV048221053 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
084 | |a ZN 8580 |0 (DE-625)157638: |2 rvk | ||
100 | 1 | |a Araneo, Rodolfo |d 1975- |e Verfasser |0 (DE-588)1073876128 |4 aut | |
245 | 1 | 0 | |a Electrical Safety Engineering of Renewable Energy Systems |c Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California) |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (288 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Electrical Safety Engineering of Renewable Energy Systems -- Contents -- Preface -- Acknowledgments -- 1 Fundamental Concepts of Electrical Safety Engineering -- 1.1 Introduction -- 1.2 Electric Shock -- 1.2.1 Ventricular Fibrillation -- 1.2.2 The Heart-current Factor -- 1.3 The Electrical Impedance of the Human Body -- 1.3.1 The Internal Resistance of the Human Body -- 1.4 Thermal Shock -- 1.5 Heated Surfaces of Electrical Equipment and Contact Burn Injuries -- 1.6 Ground-Potential and Ground-Resistance -- 1.6.1 Area of Influence of a Ground-electrode -- 1.7 Hemispherical Electrodes in Parallel -- 1.8 Hemispherical Electrodes in Series -- 1.9 Person's Body Resistance-to-ground and Touch Voltages -- 1.10 Identification of Extraneous-Conductive-Parts -- 1.11 Measuring Touch Voltages -- 2 Safety-by-Design Approach in AC/DC Systems -- 2.1 Introduction -- 2.2 Class I PV Equipment -- 2.3 Class II PV Equipment -- 2.4 Ground Faults and Ground Fault Protection -- 2.5 Functionally Grounded PV Systems -- 2.6 Non-Ground-Referenced PV Systems -- 2.7 Ground-Referenced PV Systems -- 2.8 Fire Hazard in Ground-Referenced PV Systems -- 2.9 Faults at Loads Downstream the PV Inverter in Ground-referenced PV Systems -- 2.10 Non-Electrically Separated PV System -- 2.11 PV Systems Wiring Methods and Safety -- 2.12 d.c. Currents and Safety -- 2.13 Electrical Safety of PV Systems -- 2.14 Rapid-Shutdown of PV Arrays on Buildings -- 2.15 Hazard and Risk -- 3 Grounding and Bonding -- 3.1 Introduction -- 3.2 Basic Concepts of Grounding Systems: The Ground Rod -- 3.3 The Maxwell Method -- 3.4 Multiple Rods: Mutual Resistance -- 3.5 Ground Rings and Ground Grid -- 3.6 Complex Arrangements: Rings and Ground Grids Combined with Rods and Horizontal Electrodes -- 4 Lightning Protection Systems -- 4.1 Review of Natural Lightning Physics, Modeling and Protection | |
505 | 8 | |a 4.2 Lightning Protection of PV Systems -- 4.2.1 Ground-Mounted PV Systems -- 4.2.2 Rooftop Mounted PV Systems -- 4.2.3 Protection against Overvoltage -- 4.2.4 Surge Protective Devices (SPDs) -- 4.3 Lighting Protection of Wind Turbines -- 4.3.1 Lightning Protection System (LPS) -- 4.3.2 Step and Touch Voltages -- 4.3.3 Lightning Exposure Assessment -- 4.3.4 Assessment of the Average Annual Number of Dangerous Events NL Due to Flashes Directly to and near Service Cables -- 4.3.5 Lightning Protection Zones -- 4.4 High-Frequency Grounding Systems -- 4.4.1 Arrangement of Ground Electrodes -- 4.4.2 Effective Length of a Ground Electrode -- 4.4.3 Frequency-dependent Soil and Ionization -- 5 Renewable Energy System Protection and Coordination -- 5.1 Introduction -- 5.2 Power Collection Systems -- 5.3 Cable Connections -- 5.4 Offshore Wind Farm -- 5.5 Distributed Energy Resources: Battery Energy Storage Systems and Electric Vehicles -- 6 Soil Resistivity Measurements and Ground Resistance -- 6.1 Soil Resistivity Measurements -- 6.2 Wenner Method -- 6.3 Schlumberger Method -- 6.4 Multi-layer Soils -- 6.4.1 Ground Grid in Multi-layer Soil -- 6.4.2 Ground Rod in Multi-layer Soil -- 6.5 Fall-of-Potential Method for Ground Resistance Measurement -- 6.6 Slope Method for Grounding Resistance Measurement -- 6.7 Star-delta Method for Grounding Resistance Measurement -- 6.8 Four Potential Method for Grounding Resistance Measurement -- 6.9 Potentiometer Method for Grounding Resistance Measurement -- Appendix 1: Performance of Grounding Systems in Transient Conditions -- 1 Grounding System Analysis -- 2 Mathematical Model -- 3 Computation of Impedances -- 4 Green's Function -- 4.1 Static Formulation -- 4.1.1 One-Layer Ground -- 4.1.2 Two-Layer Ground -- 4.2 Dynamic Formulation -- 4.2.1 Equivalent Transmission Line Approach -- 5 Numerical Integration Aspects | |
505 | 8 | |a 5.1 Singular Term -- 5.2 Sommerfeld Integrals -- Appendix 2: Cable Failures in Renewable Energy Systems -- 1 Cable Failures in Renewable Energy Systems: Introduction -- 2 Possible Solutions -- 2.1 Optimal Solutions -- 2.2 Termite Attacks Prevention -- 3 Non-destructive Methods for Cable Testing and Fault-locating -- 3.1 Insulation Resistance (IR) Test -- 3.1.1 IR Measurement of the Cable Insulation (XLPE) -- 3.1.2 IR Measurement of the Polyethylene (PE) Cable Jacket -- 3.2 High-Potential Test -- 3.3 LCR Test -- 3.3.1 Insulation Resistance (IR) -- 3.3.2 Dielectric Absorption Ratio (DAR) -- 3.3.3 Polarization Index (PI) -- 3.3.4 Quality Factor (Q) -- 3.3.5 Dissipation Factor (DF) -- 3.3.6 Time Domain Reflectometry (TDR) Test -- 3.3.7 Arc Reflection (ARC) Test -- 3.3.8 Bridge Methods -- 3.4 Cable Fault Analysis -- 3.4.1 Prelocation -- 3.4.2 Pinpointing -- 4 Sheath and Jacket Repairs -- 5 Termite Baiting Stations and Monitoring -- 6 Termite-proof Cables -- Index -- EULA. | |
650 | 0 | 7 | |a Energieversorgung |0 (DE-588)4014736-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrotechnik |0 (DE-588)4014390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Sicherheit |0 (DE-588)4059233-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Sicherheit |0 (DE-588)4059233-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elektrotechnik |0 (DE-588)4014390-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Energieversorgung |0 (DE-588)4014736-8 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Mitolo, Massimo |e Sonstige |0 (DE-588)1224495667 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mitolo, Massimo |t Electrical Safety Engineering of Renewable Energy Systems |d Newark : John Wiley & Sons, Incorporated,c2021 |z 978-1-119-62498-1 |
912 | |a ZDB-30-PQE |a ZDB-35-WEL | ||
940 | 1 | |q TUM_PDA_PQE | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9640319 |l DE-573 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805076528451551232 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Araneo, Rodolfo 1975- |
author_GND | (DE-588)1073876128 (DE-588)1224495667 |
author_facet | Araneo, Rodolfo 1975- |
author_role | aut |
author_sort | Araneo, Rodolfo 1975- |
author_variant | r a ra |
building | Verbundindex |
bvnumber | BV048221053 |
classification_rvk | ZN 8580 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Intro -- Electrical Safety Engineering of Renewable Energy Systems -- Contents -- Preface -- Acknowledgments -- 1 Fundamental Concepts of Electrical Safety Engineering -- 1.1 Introduction -- 1.2 Electric Shock -- 1.2.1 Ventricular Fibrillation -- 1.2.2 The Heart-current Factor -- 1.3 The Electrical Impedance of the Human Body -- 1.3.1 The Internal Resistance of the Human Body -- 1.4 Thermal Shock -- 1.5 Heated Surfaces of Electrical Equipment and Contact Burn Injuries -- 1.6 Ground-Potential and Ground-Resistance -- 1.6.1 Area of Influence of a Ground-electrode -- 1.7 Hemispherical Electrodes in Parallel -- 1.8 Hemispherical Electrodes in Series -- 1.9 Person's Body Resistance-to-ground and Touch Voltages -- 1.10 Identification of Extraneous-Conductive-Parts -- 1.11 Measuring Touch Voltages -- 2 Safety-by-Design Approach in AC/DC Systems -- 2.1 Introduction -- 2.2 Class I PV Equipment -- 2.3 Class II PV Equipment -- 2.4 Ground Faults and Ground Fault Protection -- 2.5 Functionally Grounded PV Systems -- 2.6 Non-Ground-Referenced PV Systems -- 2.7 Ground-Referenced PV Systems -- 2.8 Fire Hazard in Ground-Referenced PV Systems -- 2.9 Faults at Loads Downstream the PV Inverter in Ground-referenced PV Systems -- 2.10 Non-Electrically Separated PV System -- 2.11 PV Systems Wiring Methods and Safety -- 2.12 d.c. Currents and Safety -- 2.13 Electrical Safety of PV Systems -- 2.14 Rapid-Shutdown of PV Arrays on Buildings -- 2.15 Hazard and Risk -- 3 Grounding and Bonding -- 3.1 Introduction -- 3.2 Basic Concepts of Grounding Systems: The Ground Rod -- 3.3 The Maxwell Method -- 3.4 Multiple Rods: Mutual Resistance -- 3.5 Ground Rings and Ground Grid -- 3.6 Complex Arrangements: Rings and Ground Grids Combined with Rods and Horizontal Electrodes -- 4 Lightning Protection Systems -- 4.1 Review of Natural Lightning Physics, Modeling and Protection 4.2 Lightning Protection of PV Systems -- 4.2.1 Ground-Mounted PV Systems -- 4.2.2 Rooftop Mounted PV Systems -- 4.2.3 Protection against Overvoltage -- 4.2.4 Surge Protective Devices (SPDs) -- 4.3 Lighting Protection of Wind Turbines -- 4.3.1 Lightning Protection System (LPS) -- 4.3.2 Step and Touch Voltages -- 4.3.3 Lightning Exposure Assessment -- 4.3.4 Assessment of the Average Annual Number of Dangerous Events NL Due to Flashes Directly to and near Service Cables -- 4.3.5 Lightning Protection Zones -- 4.4 High-Frequency Grounding Systems -- 4.4.1 Arrangement of Ground Electrodes -- 4.4.2 Effective Length of a Ground Electrode -- 4.4.3 Frequency-dependent Soil and Ionization -- 5 Renewable Energy System Protection and Coordination -- 5.1 Introduction -- 5.2 Power Collection Systems -- 5.3 Cable Connections -- 5.4 Offshore Wind Farm -- 5.5 Distributed Energy Resources: Battery Energy Storage Systems and Electric Vehicles -- 6 Soil Resistivity Measurements and Ground Resistance -- 6.1 Soil Resistivity Measurements -- 6.2 Wenner Method -- 6.3 Schlumberger Method -- 6.4 Multi-layer Soils -- 6.4.1 Ground Grid in Multi-layer Soil -- 6.4.2 Ground Rod in Multi-layer Soil -- 6.5 Fall-of-Potential Method for Ground Resistance Measurement -- 6.6 Slope Method for Grounding Resistance Measurement -- 6.7 Star-delta Method for Grounding Resistance Measurement -- 6.8 Four Potential Method for Grounding Resistance Measurement -- 6.9 Potentiometer Method for Grounding Resistance Measurement -- Appendix 1: Performance of Grounding Systems in Transient Conditions -- 1 Grounding System Analysis -- 2 Mathematical Model -- 3 Computation of Impedances -- 4 Green's Function -- 4.1 Static Formulation -- 4.1.1 One-Layer Ground -- 4.1.2 Two-Layer Ground -- 4.2 Dynamic Formulation -- 4.2.1 Equivalent Transmission Line Approach -- 5 Numerical Integration Aspects 5.1 Singular Term -- 5.2 Sommerfeld Integrals -- Appendix 2: Cable Failures in Renewable Energy Systems -- 1 Cable Failures in Renewable Energy Systems: Introduction -- 2 Possible Solutions -- 2.1 Optimal Solutions -- 2.2 Termite Attacks Prevention -- 3 Non-destructive Methods for Cable Testing and Fault-locating -- 3.1 Insulation Resistance (IR) Test -- 3.1.1 IR Measurement of the Cable Insulation (XLPE) -- 3.1.2 IR Measurement of the Polyethylene (PE) Cable Jacket -- 3.2 High-Potential Test -- 3.3 LCR Test -- 3.3.1 Insulation Resistance (IR) -- 3.3.2 Dielectric Absorption Ratio (DAR) -- 3.3.3 Polarization Index (PI) -- 3.3.4 Quality Factor (Q) -- 3.3.5 Dissipation Factor (DF) -- 3.3.6 Time Domain Reflectometry (TDR) Test -- 3.3.7 Arc Reflection (ARC) Test -- 3.3.8 Bridge Methods -- 3.4 Cable Fault Analysis -- 3.4.1 Prelocation -- 3.4.2 Pinpointing -- 4 Sheath and Jacket Repairs -- 5 Termite Baiting Stations and Monitoring -- 6 Termite-proof Cables -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6795935 (ZDB-30-PAD)EBC6795935 (ZDB-89-EBL)EBL6795935 (OCoLC)1285168413 (DE-599)BVBBV048221053 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048221053</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230217</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119624998</subfield><subfield code="9">978-1-119-62499-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6795935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6795935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6795935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1285168413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221053</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8580</subfield><subfield code="0">(DE-625)157638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Araneo, Rodolfo</subfield><subfield code="d">1975-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1073876128</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical Safety Engineering of Renewable Energy Systems</subfield><subfield code="c">Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (288 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Electrical Safety Engineering of Renewable Energy Systems -- Contents -- Preface -- Acknowledgments -- 1 Fundamental Concepts of Electrical Safety Engineering -- 1.1 Introduction -- 1.2 Electric Shock -- 1.2.1 Ventricular Fibrillation -- 1.2.2 The Heart-current Factor -- 1.3 The Electrical Impedance of the Human Body -- 1.3.1 The Internal Resistance of the Human Body -- 1.4 Thermal Shock -- 1.5 Heated Surfaces of Electrical Equipment and Contact Burn Injuries -- 1.6 Ground-Potential and Ground-Resistance -- 1.6.1 Area of Influence of a Ground-electrode -- 1.7 Hemispherical Electrodes in Parallel -- 1.8 Hemispherical Electrodes in Series -- 1.9 Person's Body Resistance-to-ground and Touch Voltages -- 1.10 Identification of Extraneous-Conductive-Parts -- 1.11 Measuring Touch Voltages -- 2 Safety-by-Design Approach in AC/DC Systems -- 2.1 Introduction -- 2.2 Class I PV Equipment -- 2.3 Class II PV Equipment -- 2.4 Ground Faults and Ground Fault Protection -- 2.5 Functionally Grounded PV Systems -- 2.6 Non-Ground-Referenced PV Systems -- 2.7 Ground-Referenced PV Systems -- 2.8 Fire Hazard in Ground-Referenced PV Systems -- 2.9 Faults at Loads Downstream the PV Inverter in Ground-referenced PV Systems -- 2.10 Non-Electrically Separated PV System -- 2.11 PV Systems Wiring Methods and Safety -- 2.12 d.c. Currents and Safety -- 2.13 Electrical Safety of PV Systems -- 2.14 Rapid-Shutdown of PV Arrays on Buildings -- 2.15 Hazard and Risk -- 3 Grounding and Bonding -- 3.1 Introduction -- 3.2 Basic Concepts of Grounding Systems: The Ground Rod -- 3.3 The Maxwell Method -- 3.4 Multiple Rods: Mutual Resistance -- 3.5 Ground Rings and Ground Grid -- 3.6 Complex Arrangements: Rings and Ground Grids Combined with Rods and Horizontal Electrodes -- 4 Lightning Protection Systems -- 4.1 Review of Natural Lightning Physics, Modeling and Protection</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Lightning Protection of PV Systems -- 4.2.1 Ground-Mounted PV Systems -- 4.2.2 Rooftop Mounted PV Systems -- 4.2.3 Protection against Overvoltage -- 4.2.4 Surge Protective Devices (SPDs) -- 4.3 Lighting Protection of Wind Turbines -- 4.3.1 Lightning Protection System (LPS) -- 4.3.2 Step and Touch Voltages -- 4.3.3 Lightning Exposure Assessment -- 4.3.4 Assessment of the Average Annual Number of Dangerous Events NL Due to Flashes Directly to and near Service Cables -- 4.3.5 Lightning Protection Zones -- 4.4 High-Frequency Grounding Systems -- 4.4.1 Arrangement of Ground Electrodes -- 4.4.2 Effective Length of a Ground Electrode -- 4.4.3 Frequency-dependent Soil and Ionization -- 5 Renewable Energy System Protection and Coordination -- 5.1 Introduction -- 5.2 Power Collection Systems -- 5.3 Cable Connections -- 5.4 Offshore Wind Farm -- 5.5 Distributed Energy Resources: Battery Energy Storage Systems and Electric Vehicles -- 6 Soil Resistivity Measurements and Ground Resistance -- 6.1 Soil Resistivity Measurements -- 6.2 Wenner Method -- 6.3 Schlumberger Method -- 6.4 Multi-layer Soils -- 6.4.1 Ground Grid in Multi-layer Soil -- 6.4.2 Ground Rod in Multi-layer Soil -- 6.5 Fall-of-Potential Method for Ground Resistance Measurement -- 6.6 Slope Method for Grounding Resistance Measurement -- 6.7 Star-delta Method for Grounding Resistance Measurement -- 6.8 Four Potential Method for Grounding Resistance Measurement -- 6.9 Potentiometer Method for Grounding Resistance Measurement -- Appendix 1: Performance of Grounding Systems in Transient Conditions -- 1 Grounding System Analysis -- 2 Mathematical Model -- 3 Computation of Impedances -- 4 Green's Function -- 4.1 Static Formulation -- 4.1.1 One-Layer Ground -- 4.1.2 Two-Layer Ground -- 4.2 Dynamic Formulation -- 4.2.1 Equivalent Transmission Line Approach -- 5 Numerical Integration Aspects</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1 Singular Term -- 5.2 Sommerfeld Integrals -- Appendix 2: Cable Failures in Renewable Energy Systems -- 1 Cable Failures in Renewable Energy Systems: Introduction -- 2 Possible Solutions -- 2.1 Optimal Solutions -- 2.2 Termite Attacks Prevention -- 3 Non-destructive Methods for Cable Testing and Fault-locating -- 3.1 Insulation Resistance (IR) Test -- 3.1.1 IR Measurement of the Cable Insulation (XLPE) -- 3.1.2 IR Measurement of the Polyethylene (PE) Cable Jacket -- 3.2 High-Potential Test -- 3.3 LCR Test -- 3.3.1 Insulation Resistance (IR) -- 3.3.2 Dielectric Absorption Ratio (DAR) -- 3.3.3 Polarization Index (PI) -- 3.3.4 Quality Factor (Q) -- 3.3.5 Dissipation Factor (DF) -- 3.3.6 Time Domain Reflectometry (TDR) Test -- 3.3.7 Arc Reflection (ARC) Test -- 3.3.8 Bridge Methods -- 3.4 Cable Fault Analysis -- 3.4.1 Prelocation -- 3.4.2 Pinpointing -- 4 Sheath and Jacket Repairs -- 5 Termite Baiting Stations and Monitoring -- 6 Termite-proof Cables -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrotechnik</subfield><subfield code="0">(DE-588)4014390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Sicherheit</subfield><subfield code="0">(DE-588)4059233-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Sicherheit</subfield><subfield code="0">(DE-588)4059233-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektrotechnik</subfield><subfield code="0">(DE-588)4014390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitolo, Massimo</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1224495667</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Mitolo, Massimo</subfield><subfield code="t">Electrical Safety Engineering of Renewable Energy Systems</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">978-1-119-62498-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9640319</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221053 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-20T05:58:44Z |
institution | BVB |
isbn | 9781119624998 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601792 |
oclc_num | 1285168413 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (288 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WEL TUM_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | IEEE Press Ser |
spelling | Araneo, Rodolfo 1975- Verfasser (DE-588)1073876128 aut Electrical Safety Engineering of Renewable Energy Systems Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California) Newark John Wiley & Sons, Incorporated 2022 ©2022 1 Online-Ressource (288 Seiten) txt rdacontent c rdamedia cr rdacarrier IEEE Press Ser Description based on publisher supplied metadata and other sources Intro -- Electrical Safety Engineering of Renewable Energy Systems -- Contents -- Preface -- Acknowledgments -- 1 Fundamental Concepts of Electrical Safety Engineering -- 1.1 Introduction -- 1.2 Electric Shock -- 1.2.1 Ventricular Fibrillation -- 1.2.2 The Heart-current Factor -- 1.3 The Electrical Impedance of the Human Body -- 1.3.1 The Internal Resistance of the Human Body -- 1.4 Thermal Shock -- 1.5 Heated Surfaces of Electrical Equipment and Contact Burn Injuries -- 1.6 Ground-Potential and Ground-Resistance -- 1.6.1 Area of Influence of a Ground-electrode -- 1.7 Hemispherical Electrodes in Parallel -- 1.8 Hemispherical Electrodes in Series -- 1.9 Person's Body Resistance-to-ground and Touch Voltages -- 1.10 Identification of Extraneous-Conductive-Parts -- 1.11 Measuring Touch Voltages -- 2 Safety-by-Design Approach in AC/DC Systems -- 2.1 Introduction -- 2.2 Class I PV Equipment -- 2.3 Class II PV Equipment -- 2.4 Ground Faults and Ground Fault Protection -- 2.5 Functionally Grounded PV Systems -- 2.6 Non-Ground-Referenced PV Systems -- 2.7 Ground-Referenced PV Systems -- 2.8 Fire Hazard in Ground-Referenced PV Systems -- 2.9 Faults at Loads Downstream the PV Inverter in Ground-referenced PV Systems -- 2.10 Non-Electrically Separated PV System -- 2.11 PV Systems Wiring Methods and Safety -- 2.12 d.c. Currents and Safety -- 2.13 Electrical Safety of PV Systems -- 2.14 Rapid-Shutdown of PV Arrays on Buildings -- 2.15 Hazard and Risk -- 3 Grounding and Bonding -- 3.1 Introduction -- 3.2 Basic Concepts of Grounding Systems: The Ground Rod -- 3.3 The Maxwell Method -- 3.4 Multiple Rods: Mutual Resistance -- 3.5 Ground Rings and Ground Grid -- 3.6 Complex Arrangements: Rings and Ground Grids Combined with Rods and Horizontal Electrodes -- 4 Lightning Protection Systems -- 4.1 Review of Natural Lightning Physics, Modeling and Protection 4.2 Lightning Protection of PV Systems -- 4.2.1 Ground-Mounted PV Systems -- 4.2.2 Rooftop Mounted PV Systems -- 4.2.3 Protection against Overvoltage -- 4.2.4 Surge Protective Devices (SPDs) -- 4.3 Lighting Protection of Wind Turbines -- 4.3.1 Lightning Protection System (LPS) -- 4.3.2 Step and Touch Voltages -- 4.3.3 Lightning Exposure Assessment -- 4.3.4 Assessment of the Average Annual Number of Dangerous Events NL Due to Flashes Directly to and near Service Cables -- 4.3.5 Lightning Protection Zones -- 4.4 High-Frequency Grounding Systems -- 4.4.1 Arrangement of Ground Electrodes -- 4.4.2 Effective Length of a Ground Electrode -- 4.4.3 Frequency-dependent Soil and Ionization -- 5 Renewable Energy System Protection and Coordination -- 5.1 Introduction -- 5.2 Power Collection Systems -- 5.3 Cable Connections -- 5.4 Offshore Wind Farm -- 5.5 Distributed Energy Resources: Battery Energy Storage Systems and Electric Vehicles -- 6 Soil Resistivity Measurements and Ground Resistance -- 6.1 Soil Resistivity Measurements -- 6.2 Wenner Method -- 6.3 Schlumberger Method -- 6.4 Multi-layer Soils -- 6.4.1 Ground Grid in Multi-layer Soil -- 6.4.2 Ground Rod in Multi-layer Soil -- 6.5 Fall-of-Potential Method for Ground Resistance Measurement -- 6.6 Slope Method for Grounding Resistance Measurement -- 6.7 Star-delta Method for Grounding Resistance Measurement -- 6.8 Four Potential Method for Grounding Resistance Measurement -- 6.9 Potentiometer Method for Grounding Resistance Measurement -- Appendix 1: Performance of Grounding Systems in Transient Conditions -- 1 Grounding System Analysis -- 2 Mathematical Model -- 3 Computation of Impedances -- 4 Green's Function -- 4.1 Static Formulation -- 4.1.1 One-Layer Ground -- 4.1.2 Two-Layer Ground -- 4.2 Dynamic Formulation -- 4.2.1 Equivalent Transmission Line Approach -- 5 Numerical Integration Aspects 5.1 Singular Term -- 5.2 Sommerfeld Integrals -- Appendix 2: Cable Failures in Renewable Energy Systems -- 1 Cable Failures in Renewable Energy Systems: Introduction -- 2 Possible Solutions -- 2.1 Optimal Solutions -- 2.2 Termite Attacks Prevention -- 3 Non-destructive Methods for Cable Testing and Fault-locating -- 3.1 Insulation Resistance (IR) Test -- 3.1.1 IR Measurement of the Cable Insulation (XLPE) -- 3.1.2 IR Measurement of the Polyethylene (PE) Cable Jacket -- 3.2 High-Potential Test -- 3.3 LCR Test -- 3.3.1 Insulation Resistance (IR) -- 3.3.2 Dielectric Absorption Ratio (DAR) -- 3.3.3 Polarization Index (PI) -- 3.3.4 Quality Factor (Q) -- 3.3.5 Dissipation Factor (DF) -- 3.3.6 Time Domain Reflectometry (TDR) Test -- 3.3.7 Arc Reflection (ARC) Test -- 3.3.8 Bridge Methods -- 3.4 Cable Fault Analysis -- 3.4.1 Prelocation -- 3.4.2 Pinpointing -- 4 Sheath and Jacket Repairs -- 5 Termite Baiting Stations and Monitoring -- 6 Termite-proof Cables -- Index -- EULA. Energieversorgung (DE-588)4014736-8 gnd rswk-swf Elektrotechnik (DE-588)4014390-9 gnd rswk-swf Erneuerbare Energien (DE-588)4068598-6 gnd rswk-swf Technische Sicherheit (DE-588)4059233-9 gnd rswk-swf Technische Sicherheit (DE-588)4059233-9 s DE-604 Elektrotechnik (DE-588)4014390-9 s Erneuerbare Energien (DE-588)4068598-6 s Energieversorgung (DE-588)4014736-8 s Mitolo, Massimo Sonstige (DE-588)1224495667 oth Erscheint auch als Druck-Ausgabe Mitolo, Massimo Electrical Safety Engineering of Renewable Energy Systems Newark : John Wiley & Sons, Incorporated,c2021 978-1-119-62498-1 |
spellingShingle | Araneo, Rodolfo 1975- Electrical Safety Engineering of Renewable Energy Systems Intro -- Electrical Safety Engineering of Renewable Energy Systems -- Contents -- Preface -- Acknowledgments -- 1 Fundamental Concepts of Electrical Safety Engineering -- 1.1 Introduction -- 1.2 Electric Shock -- 1.2.1 Ventricular Fibrillation -- 1.2.2 The Heart-current Factor -- 1.3 The Electrical Impedance of the Human Body -- 1.3.1 The Internal Resistance of the Human Body -- 1.4 Thermal Shock -- 1.5 Heated Surfaces of Electrical Equipment and Contact Burn Injuries -- 1.6 Ground-Potential and Ground-Resistance -- 1.6.1 Area of Influence of a Ground-electrode -- 1.7 Hemispherical Electrodes in Parallel -- 1.8 Hemispherical Electrodes in Series -- 1.9 Person's Body Resistance-to-ground and Touch Voltages -- 1.10 Identification of Extraneous-Conductive-Parts -- 1.11 Measuring Touch Voltages -- 2 Safety-by-Design Approach in AC/DC Systems -- 2.1 Introduction -- 2.2 Class I PV Equipment -- 2.3 Class II PV Equipment -- 2.4 Ground Faults and Ground Fault Protection -- 2.5 Functionally Grounded PV Systems -- 2.6 Non-Ground-Referenced PV Systems -- 2.7 Ground-Referenced PV Systems -- 2.8 Fire Hazard in Ground-Referenced PV Systems -- 2.9 Faults at Loads Downstream the PV Inverter in Ground-referenced PV Systems -- 2.10 Non-Electrically Separated PV System -- 2.11 PV Systems Wiring Methods and Safety -- 2.12 d.c. Currents and Safety -- 2.13 Electrical Safety of PV Systems -- 2.14 Rapid-Shutdown of PV Arrays on Buildings -- 2.15 Hazard and Risk -- 3 Grounding and Bonding -- 3.1 Introduction -- 3.2 Basic Concepts of Grounding Systems: The Ground Rod -- 3.3 The Maxwell Method -- 3.4 Multiple Rods: Mutual Resistance -- 3.5 Ground Rings and Ground Grid -- 3.6 Complex Arrangements: Rings and Ground Grids Combined with Rods and Horizontal Electrodes -- 4 Lightning Protection Systems -- 4.1 Review of Natural Lightning Physics, Modeling and Protection 4.2 Lightning Protection of PV Systems -- 4.2.1 Ground-Mounted PV Systems -- 4.2.2 Rooftop Mounted PV Systems -- 4.2.3 Protection against Overvoltage -- 4.2.4 Surge Protective Devices (SPDs) -- 4.3 Lighting Protection of Wind Turbines -- 4.3.1 Lightning Protection System (LPS) -- 4.3.2 Step and Touch Voltages -- 4.3.3 Lightning Exposure Assessment -- 4.3.4 Assessment of the Average Annual Number of Dangerous Events NL Due to Flashes Directly to and near Service Cables -- 4.3.5 Lightning Protection Zones -- 4.4 High-Frequency Grounding Systems -- 4.4.1 Arrangement of Ground Electrodes -- 4.4.2 Effective Length of a Ground Electrode -- 4.4.3 Frequency-dependent Soil and Ionization -- 5 Renewable Energy System Protection and Coordination -- 5.1 Introduction -- 5.2 Power Collection Systems -- 5.3 Cable Connections -- 5.4 Offshore Wind Farm -- 5.5 Distributed Energy Resources: Battery Energy Storage Systems and Electric Vehicles -- 6 Soil Resistivity Measurements and Ground Resistance -- 6.1 Soil Resistivity Measurements -- 6.2 Wenner Method -- 6.3 Schlumberger Method -- 6.4 Multi-layer Soils -- 6.4.1 Ground Grid in Multi-layer Soil -- 6.4.2 Ground Rod in Multi-layer Soil -- 6.5 Fall-of-Potential Method for Ground Resistance Measurement -- 6.6 Slope Method for Grounding Resistance Measurement -- 6.7 Star-delta Method for Grounding Resistance Measurement -- 6.8 Four Potential Method for Grounding Resistance Measurement -- 6.9 Potentiometer Method for Grounding Resistance Measurement -- Appendix 1: Performance of Grounding Systems in Transient Conditions -- 1 Grounding System Analysis -- 2 Mathematical Model -- 3 Computation of Impedances -- 4 Green's Function -- 4.1 Static Formulation -- 4.1.1 One-Layer Ground -- 4.1.2 Two-Layer Ground -- 4.2 Dynamic Formulation -- 4.2.1 Equivalent Transmission Line Approach -- 5 Numerical Integration Aspects 5.1 Singular Term -- 5.2 Sommerfeld Integrals -- Appendix 2: Cable Failures in Renewable Energy Systems -- 1 Cable Failures in Renewable Energy Systems: Introduction -- 2 Possible Solutions -- 2.1 Optimal Solutions -- 2.2 Termite Attacks Prevention -- 3 Non-destructive Methods for Cable Testing and Fault-locating -- 3.1 Insulation Resistance (IR) Test -- 3.1.1 IR Measurement of the Cable Insulation (XLPE) -- 3.1.2 IR Measurement of the Polyethylene (PE) Cable Jacket -- 3.2 High-Potential Test -- 3.3 LCR Test -- 3.3.1 Insulation Resistance (IR) -- 3.3.2 Dielectric Absorption Ratio (DAR) -- 3.3.3 Polarization Index (PI) -- 3.3.4 Quality Factor (Q) -- 3.3.5 Dissipation Factor (DF) -- 3.3.6 Time Domain Reflectometry (TDR) Test -- 3.3.7 Arc Reflection (ARC) Test -- 3.3.8 Bridge Methods -- 3.4 Cable Fault Analysis -- 3.4.1 Prelocation -- 3.4.2 Pinpointing -- 4 Sheath and Jacket Repairs -- 5 Termite Baiting Stations and Monitoring -- 6 Termite-proof Cables -- Index -- EULA. Energieversorgung (DE-588)4014736-8 gnd Elektrotechnik (DE-588)4014390-9 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Technische Sicherheit (DE-588)4059233-9 gnd |
subject_GND | (DE-588)4014736-8 (DE-588)4014390-9 (DE-588)4068598-6 (DE-588)4059233-9 |
title | Electrical Safety Engineering of Renewable Energy Systems |
title_auth | Electrical Safety Engineering of Renewable Energy Systems |
title_exact_search | Electrical Safety Engineering of Renewable Energy Systems |
title_exact_search_txtP | Electrical Safety Engineering of Renewable Energy Systems |
title_full | Electrical Safety Engineering of Renewable Energy Systems Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California) |
title_fullStr | Electrical Safety Engineering of Renewable Energy Systems Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California) |
title_full_unstemmed | Electrical Safety Engineering of Renewable Energy Systems Rodolfo Araneo (University Of Rome, Rome, Italy), Massimo Mitolo (Irvine Valley College, Irvine, California) |
title_short | Electrical Safety Engineering of Renewable Energy Systems |
title_sort | electrical safety engineering of renewable energy systems |
topic | Energieversorgung (DE-588)4014736-8 gnd Elektrotechnik (DE-588)4014390-9 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Technische Sicherheit (DE-588)4059233-9 gnd |
topic_facet | Energieversorgung Elektrotechnik Erneuerbare Energien Technische Sicherheit |
work_keys_str_mv | AT araneorodolfo electricalsafetyengineeringofrenewableenergysystems AT mitolomassimo electricalsafetyengineeringofrenewableenergysystems |