Optical fiber sensors for the next generation of rehabilitation robotics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press
[2022]
|
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (x, 305 Seiten) Illustrationen, Diagramme |
ISBN: | 9780323903493 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221013 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780323903493 |9 978-0-323-90349-3 | ||
035 | |a (ZDB-30-PQE)EBC6793689 | ||
035 | |a (ZDB-30-PAD)EBC6793689 | ||
035 | |a (ZDB-89-EBL)EBL6793689 | ||
035 | |a (OCoLC)1283859808 | ||
035 | |a (DE-599)BVBBV048221013 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 681.25 | |
084 | |a MSR 422 |2 stub | ||
084 | |a DAT 815 |2 stub | ||
084 | |a MED 370 |2 stub | ||
100 | 1 | |a Leal-Junior, Arnaldo G. |e Verfasser |0 (DE-588)126703324X |4 aut | |
245 | 1 | 0 | |a Optical fiber sensors for the next generation of rehabilitation robotics |c Arnaldo Leal-Junior, Anselmo Frizera-Neto |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (x, 305 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF. | |
505 | 8 | |a 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation | |
505 | 8 | |a 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook | |
505 | 8 | |a Index -- Back Cover | |
700 | 1 | |a Frizera-Neto, Anselmo |e Verfasser |0 (DE-588)1267033576 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Leal-Junior, Arnaldo |t Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics |d San Diego : Elsevier Science & Technology,c2021 |n Druck-Ausgabe |z 978-0-323-85952-3 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601752 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6793689 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002049867776 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Leal-Junior, Arnaldo G. Frizera-Neto, Anselmo |
author_GND | (DE-588)126703324X (DE-588)1267033576 |
author_facet | Leal-Junior, Arnaldo G. Frizera-Neto, Anselmo |
author_role | aut aut |
author_sort | Leal-Junior, Arnaldo G. |
author_variant | a g l j agl aglj a f n afn |
building | Verbundindex |
bvnumber | BV048221013 |
classification_tum | MSR 422 DAT 815 MED 370 |
collection | ZDB-30-PQE |
contents | Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF. 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook Index -- Back Cover |
ctrlnum | (ZDB-30-PQE)EBC6793689 (ZDB-30-PAD)EBC6793689 (ZDB-89-EBL)EBL6793689 (OCoLC)1283859808 (DE-599)BVBBV048221013 |
dewey-full | 681.25 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.25 |
dewey-search | 681.25 |
dewey-sort | 3681.25 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien Informatik Medizintechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik Medizin |
discipline_str_mv | Handwerk und Gewerbe / Verschiedene Technologien Informatik Medizintechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07490nmm a2200457zc 4500</leader><controlfield tag="001">BV048221013</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323903493</subfield><subfield code="9">978-0-323-90349-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6793689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6793689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6793689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1283859808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221013</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.25</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MSR 422</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 815</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MED 370</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leal-Junior, Arnaldo G.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)126703324X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical fiber sensors for the next generation of rehabilitation robotics</subfield><subfield code="c">Arnaldo Leal-Junior, Anselmo Frizera-Neto</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 305 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Index -- Back Cover</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frizera-Neto, Anselmo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1267033576</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Leal-Junior, Arnaldo</subfield><subfield code="t">Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-323-85952-3</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601752</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6793689</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221013 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9780323903493 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601752 |
oclc_num | 1283859808 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (x, 305 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Academic Press |
record_format | marc |
spelling | Leal-Junior, Arnaldo G. Verfasser (DE-588)126703324X aut Optical fiber sensors for the next generation of rehabilitation robotics Arnaldo Leal-Junior, Anselmo Frizera-Neto London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom Academic Press [2022] © 2022 1 Online-Ressource (x, 305 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF. 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook Index -- Back Cover Frizera-Neto, Anselmo Verfasser (DE-588)1267033576 aut Erscheint auch als Leal-Junior, Arnaldo Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics San Diego : Elsevier Science & Technology,c2021 Druck-Ausgabe 978-0-323-85952-3 |
spellingShingle | Leal-Junior, Arnaldo G. Frizera-Neto, Anselmo Optical fiber sensors for the next generation of rehabilitation robotics Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF. 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook Index -- Back Cover |
title | Optical fiber sensors for the next generation of rehabilitation robotics |
title_auth | Optical fiber sensors for the next generation of rehabilitation robotics |
title_exact_search | Optical fiber sensors for the next generation of rehabilitation robotics |
title_exact_search_txtP | Optical fiber sensors for the next generation of rehabilitation robotics |
title_full | Optical fiber sensors for the next generation of rehabilitation robotics Arnaldo Leal-Junior, Anselmo Frizera-Neto |
title_fullStr | Optical fiber sensors for the next generation of rehabilitation robotics Arnaldo Leal-Junior, Anselmo Frizera-Neto |
title_full_unstemmed | Optical fiber sensors for the next generation of rehabilitation robotics Arnaldo Leal-Junior, Anselmo Frizera-Neto |
title_short | Optical fiber sensors for the next generation of rehabilitation robotics |
title_sort | optical fiber sensors for the next generation of rehabilitation robotics |
work_keys_str_mv | AT lealjuniorarnaldog opticalfibersensorsforthenextgenerationofrehabilitationrobotics AT frizeranetoanselmo opticalfibersensorsforthenextgenerationofrehabilitationrobotics |