Metal Additive Manufacturing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2022
|
Online-Zugang: | DE-858 DE-Aug4 Volltext |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (627 Seiten) |
ISBN: | 9781119210849 9781119210801 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220946 | ||
003 | DE-604 | ||
005 | 20230510 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119210849 |9 978-1-119-21084-9 | ||
020 | |a 9781119210801 |9 978-1-119-21080-1 | ||
035 | |a (ZDB-30-PQE)EBC6787673 | ||
035 | |a (ZDB-30-PAD)EBC6787673 | ||
035 | |a (ZDB-89-EBL)EBL6787673 | ||
035 | |a (OCoLC)1281970404 | ||
035 | |a (DE-599)BVBBV048220946 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-858 |a DE-Aug4 | ||
082 | 0 | |a 621.988 | |
100 | 1 | |a Sarker, Dyuti |e Verfasser |4 aut | |
245 | 1 | 0 | |a Metal Additive Manufacturing |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (627 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) | |
505 | 8 | |a 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. | |
505 | 8 | |a 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary | |
505 | 8 | |a References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength | |
505 | 8 | |a 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing | |
505 | 8 | |a 10.1.1 Integrated Topological and Functional Optimization DfAM. | |
700 | 1 | |a Toyserkani, Ehsan |e Sonstige |4 oth | |
700 | 1 | |a Obehi Ibhadode, Osezua |e Sonstige |4 oth | |
700 | 1 | |a Liravi, Farzad |e Sonstige |4 oth | |
700 | 1 | |a Russo, Paola |e Sonstige |4 oth | |
700 | 1 | |a Taherkhani, Katayoon |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Sarker, Dyuti |t Metal Additive Manufacturing |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781119210788 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |x Verlag |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-35-WIC | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |l DE-858 |p ZDB-35-WIC |q FCO_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805076528427433984 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sarker, Dyuti |
author_facet | Sarker, Dyuti |
author_role | aut |
author_sort | Sarker, Dyuti |
author_variant | d s ds |
building | Verbundindex |
bvnumber | BV048220946 |
collection | ZDB-30-PQE ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 10.1.1 Integrated Topological and Functional Optimization DfAM. |
ctrlnum | (ZDB-30-PQE)EBC6787673 (ZDB-30-PAD)EBC6787673 (ZDB-89-EBL)EBL6787673 (OCoLC)1281970404 (DE-599)BVBBV048220946 |
dewey-full | 621.988 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.988 |
dewey-search | 621.988 |
dewey-sort | 3621.988 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048220946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230510</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210849</subfield><subfield code="9">978-1-119-21084-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210801</subfield><subfield code="9">978-1-119-21080-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281970404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.988</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarker, Dyuti</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal Additive Manufacturing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (627 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1 Integrated Topological and Functional Optimization DfAM.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toyserkani, Ehsan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obehi Ibhadode, Osezua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liravi, Farzad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paola</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taherkhani, Katayoon</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sarker, Dyuti</subfield><subfield code="t">Metal Additive Manufacturing</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2022</subfield><subfield code="z">9781119210788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FCO_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048220946 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-20T05:58:44Z |
institution | BVB |
isbn | 9781119210849 9781119210801 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601684 |
oclc_num | 1281970404 |
open_access_boolean | |
owner | DE-858 DE-Aug4 |
owner_facet | DE-858 DE-Aug4 |
physical | 1 Online-Ressource (627 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WIC ZDB-35-WIC FCO_PDA_WIC_Kauf ZDB-35-WIC FHA_PDA_WIC_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Sarker, Dyuti Verfasser aut Metal Additive Manufacturing Newark John Wiley & Sons, Incorporated 2022 ©2022 1 Online-Ressource (627 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 10.1.1 Integrated Topological and Functional Optimization DfAM. Toyserkani, Ehsan Sonstige oth Obehi Ibhadode, Osezua Sonstige oth Liravi, Farzad Sonstige oth Russo, Paola Sonstige oth Taherkhani, Katayoon Sonstige oth Erscheint auch als Druck-Ausgabe Sarker, Dyuti Metal Additive Manufacturing Newark : John Wiley & Sons, Incorporated,c2022 9781119210788 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 Verlag Volltext |
spellingShingle | Sarker, Dyuti Metal Additive Manufacturing Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 10.1.1 Integrated Topological and Functional Optimization DfAM. |
title | Metal Additive Manufacturing |
title_auth | Metal Additive Manufacturing |
title_exact_search | Metal Additive Manufacturing |
title_exact_search_txtP | Metal Additive Manufacturing |
title_full | Metal Additive Manufacturing |
title_fullStr | Metal Additive Manufacturing |
title_full_unstemmed | Metal Additive Manufacturing |
title_short | Metal Additive Manufacturing |
title_sort | metal additive manufacturing |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |
work_keys_str_mv | AT sarkerdyuti metaladditivemanufacturing AT toyserkaniehsan metaladditivemanufacturing AT obehiibhadodeosezua metaladditivemanufacturing AT liravifarzad metaladditivemanufacturing AT russopaola metaladditivemanufacturing AT taherkhanikatayoon metaladditivemanufacturing |