Optimization and control for partial differential equations: uncertainty quantification, open and closed-loop control, and shape optimization
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of i...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
© 2022 |
Schriftenreihe: | Radon series on computational and applied mathematics
Volume 29 |
Schlagworte: | |
Zusammenfassung: | This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications |
Beschreibung: | VIII, 462 Seiten Illustrationen, Diagramme |
ISBN: | 9783110695960 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048218267 | ||
003 | DE-604 | ||
005 | 20221215 | ||
007 | t | ||
008 | 220513s2022 a||| |||| 00||| eng d | ||
020 | |a 9783110695960 |c hbk |9 978-3-11-069596-0 | ||
024 | 3 | |a 9783110695960 | |
035 | |a (OCoLC)1309406603 | ||
035 | |a (DE-599)BVBBV048218267 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
245 | 1 | 0 | |a Optimization and control for partial differential equations |b uncertainty quantification, open and closed-loop control, and shape optimization |c edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 1 | |a © 2022 | |
300 | |a VIII, 462 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Radon series on computational and applied mathematics |v Volume 29 | |
520 | |a This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications | ||
653 | |a Hardcover, Softcover / Mathematik | ||
700 | 1 | |a Herzog, Roland |d 1974- |0 (DE-588)1032195827 |4 edt | |
700 | 1 | |a Heinkenschloß, Matthias |0 (DE-588)1157333508 |4 edt | |
700 | 1 | |a Kalise, Dante |0 (DE-588)1164405233 |4 edt | |
700 | 1 | |a Stadler, Georg |4 edt | |
700 | 1 | |a Trélat, Emmanuel |0 (DE-588)1256438812 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-069598-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-069600-4 |
830 | 0 | |a Radon series on computational and applied mathematics |v Volume 29 |w (DE-604)BV023335470 |9 29 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033599042 |
Datensatz im Suchindex
_version_ | 1804183997568253952 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Herzog, Roland 1974- Heinkenschloß, Matthias Kalise, Dante Stadler, Georg Trélat, Emmanuel |
author2_role | edt edt edt edt edt |
author2_variant | r h rh m h mh d k dk g s gs e t et |
author_GND | (DE-588)1032195827 (DE-588)1157333508 (DE-588)1164405233 (DE-588)1256438812 |
author_facet | Herzog, Roland 1974- Heinkenschloß, Matthias Kalise, Dante Stadler, Georg Trélat, Emmanuel |
building | Verbundindex |
bvnumber | BV048218267 |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)1309406603 (DE-599)BVBBV048218267 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02332nam a2200409 cb4500</leader><controlfield tag="001">BV048218267</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220513s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110695960</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-11-069596-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110695960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1309406603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048218267</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization and control for partial differential equations</subfield><subfield code="b">uncertainty quantification, open and closed-loop control, and shape optimization</subfield><subfield code="c">edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 462 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Radon series on computational and applied mathematics</subfield><subfield code="v">Volume 29</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herzog, Roland</subfield><subfield code="d">1974-</subfield><subfield code="0">(DE-588)1032195827</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heinkenschloß, Matthias</subfield><subfield code="0">(DE-588)1157333508</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalise, Dante</subfield><subfield code="0">(DE-588)1164405233</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Georg</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trélat, Emmanuel</subfield><subfield code="0">(DE-588)1256438812</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-069598-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-069600-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Radon series on computational and applied mathematics</subfield><subfield code="v">Volume 29</subfield><subfield code="w">(DE-604)BV023335470</subfield><subfield code="9">29</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033599042</subfield></datafield></record></collection> |
id | DE-604.BV048218267 |
illustrated | Illustrated |
index_date | 2024-07-03T19:50:02Z |
indexdate | 2024-07-10T09:32:20Z |
institution | BVB |
isbn | 9783110695960 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033599042 |
oclc_num | 1309406603 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | VIII, 462 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series | Radon series on computational and applied mathematics |
series2 | Radon series on computational and applied mathematics |
spelling | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat Berlin ; Boston De Gruyter [2022] © 2022 VIII, 462 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Radon series on computational and applied mathematics Volume 29 This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications Hardcover, Softcover / Mathematik Herzog, Roland 1974- (DE-588)1032195827 edt Heinkenschloß, Matthias (DE-588)1157333508 edt Kalise, Dante (DE-588)1164405233 edt Stadler, Georg edt Trélat, Emmanuel (DE-588)1256438812 edt Erscheint auch als Online-Ausgabe, PDF 978-3-11-069598-4 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-069600-4 Radon series on computational and applied mathematics Volume 29 (DE-604)BV023335470 29 |
spellingShingle | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization Radon series on computational and applied mathematics |
title | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization |
title_auth | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization |
title_exact_search | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization |
title_exact_search_txtP | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization |
title_full | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat |
title_fullStr | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat |
title_full_unstemmed | Optimization and control for partial differential equations uncertainty quantification, open and closed-loop control, and shape optimization edited by Roland Herzog, Matthias Heinkenschloss, Dante Kalise, Georg Stadler, and Emmanuel Trélat |
title_short | Optimization and control for partial differential equations |
title_sort | optimization and control for partial differential equations uncertainty quantification open and closed loop control and shape optimization |
title_sub | uncertainty quantification, open and closed-loop control, and shape optimization |
volume_link | (DE-604)BV023335470 |
work_keys_str_mv | AT herzogroland optimizationandcontrolforpartialdifferentialequationsuncertaintyquantificationopenandclosedloopcontrolandshapeoptimization AT heinkenschloßmatthias optimizationandcontrolforpartialdifferentialequationsuncertaintyquantificationopenandclosedloopcontrolandshapeoptimization AT kalisedante optimizationandcontrolforpartialdifferentialequationsuncertaintyquantificationopenandclosedloopcontrolandshapeoptimization AT stadlergeorg optimizationandcontrolforpartialdifferentialequationsuncertaintyquantificationopenandclosedloopcontrolandshapeoptimization AT trelatemmanuel optimizationandcontrolforpartialdifferentialequationsuncertaintyquantificationopenandclosedloopcontrolandshapeoptimization |