Excursions in multiplicative number theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
2022
Cham Springer Nature 2022 |
Ausgabe: | 1st ed. 2022 |
Schriftenreihe: | Birkhäuser Advanced Texts Basler Lehrbücher
|
Schlagworte: | |
Beschreibung: | This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors.Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided "walks" invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Fainleib theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at "higher ground", where they will find opportunities for extensions and applications, such as the Selberg formula, Exponential sums with arithmetical coefficients, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage.Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area Approach: Multiplicativity.- Arithmetic Convolution.- A Calculus on Arithmetical Functions.- Analytical Dirichlet Series.- Growth of Arithmetical Functions.- An "Algebraical" Multiplicative Function.- Möbius Inversions.- The Convolution Walk.- Handling a Smooth Factor.- The Convolution Method.- Euler Products and Euler Sums.- Some Practice.- The Hyperbola Principle.- The Levin-Fanleib Walk.- The Mertens Estimates.- The Levin-Fanleib Theorem.- Variations on a Theme of Chebyshev.- Primes in progressions.- A famous constant.- Euler Products with Primes in AP.- Chinese Remainder and Multiplicativity.- The Mellin Walk.- The Riemann zeta-function.- The Mellin Transform.- Proof Theorem l.- Roughing up: Removing a Smoothening.- Proving the Prime Number Theorem.- Higher Ground: Applications / Extensions.- The Selberg Formula.- Rankin's Trick and Brun's Sieve.- Three Arithmetical Exponential Sums.- Convolution method / Möbius function.- The Large Sieve Inequality.- Montgomery's Sieve |
Beschreibung: | xxii, 338 Seiten 750 grams |
ISBN: | 9783030731687 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048210308 | ||
003 | DE-604 | ||
005 | 20220621 | ||
007 | t | ||
008 | 220510s2022 |||| 00||| eng d | ||
020 | |a 9783030731687 |9 978-3-030-73168-7 | ||
024 | 3 | |a 9783030731687 | |
035 | |a (OCoLC)1309513354 | ||
035 | |a (DE-599)BVBBV048210308 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Ramaré, Olivier |e Verfasser |0 (DE-588)143794809 |4 aut | |
245 | 1 | 0 | |a Excursions in multiplicative number theory |c Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova |
250 | |a 1st ed. 2022 | ||
264 | 1 | |a Cham |b Birkhäuser |c 2022 | |
264 | 1 | |a Cham |b Springer Nature |c 2022 | |
300 | |a xxii, 338 Seiten |c 750 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Birkhäuser Advanced Texts Basler Lehrbücher | |
500 | |a This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors.Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided "walks" invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Fainleib theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at "higher ground", where they will find opportunities for extensions and applications, such as the Selberg formula, Exponential sums with arithmetical coefficients, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage.Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area | ||
500 | |a Approach: Multiplicativity.- Arithmetic Convolution.- A Calculus on Arithmetical Functions.- Analytical Dirichlet Series.- Growth of Arithmetical Functions.- An "Algebraical" Multiplicative Function.- Möbius Inversions.- The Convolution Walk.- Handling a Smooth Factor.- The Convolution Method.- Euler Products and Euler Sums.- Some Practice.- The Hyperbola Principle.- The Levin-Fanleib Walk.- The Mertens Estimates.- The Levin-Fanleib Theorem.- Variations on a Theme of Chebyshev.- Primes in progressions.- A famous constant.- Euler Products with Primes in AP.- Chinese Remainder and Multiplicativity.- The Mellin Walk.- The Riemann zeta-function.- The Mellin Transform.- Proof Theorem l.- Roughing up: Removing a Smoothening.- Proving the Prime Number Theorem.- Higher Ground: Applications / Extensions.- The Selberg Formula.- Rankin's Trick and Brun's Sieve.- Three Arithmetical Exponential Sums.- Convolution method / Möbius function.- The Large Sieve Inequality.- Montgomery's Sieve | ||
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik | ||
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Moree, Pieter |d 1965- |e Sonstige |0 (DE-588)111993317X |4 oth | |
700 | 1 | |a Sedunova, Alisa |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-73169-4 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033591167 |
Datensatz im Suchindex
_version_ | 1804183982573617152 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ramaré, Olivier |
author_GND | (DE-588)143794809 (DE-588)111993317X |
author_facet | Ramaré, Olivier |
author_role | aut |
author_sort | Ramaré, Olivier |
author_variant | o r or |
building | Verbundindex |
bvnumber | BV048210308 |
ctrlnum | (OCoLC)1309513354 (DE-599)BVBBV048210308 |
edition | 1st ed. 2022 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03983nam a2200421 c 4500</leader><controlfield tag="001">BV048210308</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220621 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220510s2022 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030731687</subfield><subfield code="9">978-3-030-73168-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030731687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1309513354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048210308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramaré, Olivier</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143794809</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Excursions in multiplicative number theory</subfield><subfield code="c">Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 338 Seiten</subfield><subfield code="c">750 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser Advanced Texts Basler Lehrbücher</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors.Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided "walks" invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Fainleib theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at "higher ground", where they will find opportunities for extensions and applications, such as the Selberg formula, Exponential sums with arithmetical coefficients, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage.Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Approach: Multiplicativity.- Arithmetic Convolution.- A Calculus on Arithmetical Functions.- Analytical Dirichlet Series.- Growth of Arithmetical Functions.- An "Algebraical" Multiplicative Function.- Möbius Inversions.- The Convolution Walk.- Handling a Smooth Factor.- The Convolution Method.- Euler Products and Euler Sums.- Some Practice.- The Hyperbola Principle.- The Levin-Fanleib Walk.- The Mertens Estimates.- The Levin-Fanleib Theorem.- Variations on a Theme of Chebyshev.- Primes in progressions.- A famous constant.- Euler Products with Primes in AP.- Chinese Remainder and Multiplicativity.- The Mellin Walk.- The Riemann zeta-function.- The Mellin Transform.- Proof Theorem l.- Roughing up: Removing a Smoothening.- Proving the Prime Number Theorem.- Higher Ground: Applications / Extensions.- The Selberg Formula.- Rankin's Trick and Brun's Sieve.- Three Arithmetical Exponential Sums.- Convolution method / Möbius function.- The Large Sieve Inequality.- Montgomery's Sieve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moree, Pieter</subfield><subfield code="d">1965-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)111993317X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sedunova, Alisa</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-73169-4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033591167</subfield></datafield></record></collection> |
id | DE-604.BV048210308 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:48:21Z |
indexdate | 2024-07-10T09:32:06Z |
institution | BVB |
isbn | 9783030731687 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033591167 |
oclc_num | 1309513354 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxii, 338 Seiten 750 grams |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Birkhäuser Springer Nature |
record_format | marc |
series2 | Birkhäuser Advanced Texts Basler Lehrbücher |
spelling | Ramaré, Olivier Verfasser (DE-588)143794809 aut Excursions in multiplicative number theory Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova 1st ed. 2022 Cham Birkhäuser 2022 Cham Springer Nature 2022 xxii, 338 Seiten 750 grams txt rdacontent n rdamedia nc rdacarrier Birkhäuser Advanced Texts Basler Lehrbücher This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors.Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided "walks" invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Fainleib theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at "higher ground", where they will find opportunities for extensions and applications, such as the Selberg formula, Exponential sums with arithmetical coefficients, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage.Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area Approach: Multiplicativity.- Arithmetic Convolution.- A Calculus on Arithmetical Functions.- Analytical Dirichlet Series.- Growth of Arithmetical Functions.- An "Algebraical" Multiplicative Function.- Möbius Inversions.- The Convolution Walk.- Handling a Smooth Factor.- The Convolution Method.- Euler Products and Euler Sums.- Some Practice.- The Hyperbola Principle.- The Levin-Fanleib Walk.- The Mertens Estimates.- The Levin-Fanleib Theorem.- Variations on a Theme of Chebyshev.- Primes in progressions.- A famous constant.- Euler Products with Primes in AP.- Chinese Remainder and Multiplicativity.- The Mellin Walk.- The Riemann zeta-function.- The Mellin Transform.- Proof Theorem l.- Roughing up: Removing a Smoothening.- Proving the Prime Number Theorem.- Higher Ground: Applications / Extensions.- The Selberg Formula.- Rankin's Trick and Brun's Sieve.- Three Arithmetical Exponential Sums.- Convolution method / Möbius function.- The Large Sieve Inequality.- Montgomery's Sieve Number theory Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Hardcover, Softcover / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik Zahlentheorie (DE-588)4067277-3 s DE-604 Moree, Pieter 1965- Sonstige (DE-588)111993317X oth Sedunova, Alisa Sonstige oth Erscheint auch als Online-Ausgabe 978-3-030-73169-4 |
spellingShingle | Ramaré, Olivier Excursions in multiplicative number theory Number theory Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4067277-3 |
title | Excursions in multiplicative number theory |
title_auth | Excursions in multiplicative number theory |
title_exact_search | Excursions in multiplicative number theory |
title_exact_search_txtP | Excursions in multiplicative number theory |
title_full | Excursions in multiplicative number theory Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova |
title_fullStr | Excursions in multiplicative number theory Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova |
title_full_unstemmed | Excursions in multiplicative number theory Olivier Ramaré. With contributions by Pieter Moree and Alisa Sedunova |
title_short | Excursions in multiplicative number theory |
title_sort | excursions in multiplicative number theory |
topic | Number theory Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Number theory Zahlentheorie |
work_keys_str_mv | AT ramareolivier excursionsinmultiplicativenumbertheory AT moreepieter excursionsinmultiplicativenumbertheory AT sedunovaalisa excursionsinmultiplicativenumbertheory |