Machine learning: a first course for engineers and scientists
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York, NY
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seite 327-334 Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | xii, 338 Seiten Illustrationen, Diagramme |
ISBN: | 9781108843607 1108843603 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV048209622 | ||
003 | DE-604 | ||
005 | 20240813 | ||
007 | t | ||
008 | 220510s2022 a||| |||| 00||| eng d | ||
020 | |a 9781108843607 |9 978-1-108-84360-7 | ||
020 | |a 1108843603 |9 1-108-84360-3 | ||
024 | 7 | |a 10.1017/9781108919371 |2 doi | |
035 | |a (OCoLC)1315743869 | ||
035 | |a (DE-599)HEB491889275 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-1050 |a DE-473 |a DE-862 |a DE-1043 |a DE-11 |a DE-521 |a DE-523 |a DE-573 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
100 | 1 | |a Lindholm, Andreas |e Verfasser |0 (DE-588)128952598 |4 aut | |
245 | 1 | 0 | |a Machine learning |b a first course for engineers and scientists |c Andreas Lindholm (Annotell, Sweden), Niklas Wahlström (Uppsala University, Sweden), Fredrik Lindsten (Linköping University, Sweden), Thomas B. Schön (Uppsala University, Sweden) |
264 | 1 | |a Cambridge, UK ; New York, NY |b Cambridge University Press |c 2022 | |
300 | |a xii, 338 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverzeichnis Seite 327-334 | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wahlström, Niklas |d 1984- |e Verfasser |0 (DE-588)1258311712 |4 aut | |
700 | 1 | |a Lindsten, Fredrik |e Verfasser |0 (DE-588)1258742942 |4 aut | |
700 | 1 | |a Schön, Thomas B. |d 1977- |e Verfasser |0 (DE-588)1258743671 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Onlineausgabe, epub |z 978-1-108-91937-1 |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033590490&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033590490 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 300 L745 |
DE-BY-FWS_katkey | 1007002 |
DE-BY-FWS_media_number | 083000521723 |
_version_ | 1807326467193831424 |
adam_text |
Contents Acknowledgements ix Notation xi 1 Introduction 1.1 1.2 1.3 2 3 Supervised Learning: A First Approach 2.1 Supervised Machine Learning. 2.2 A Distance-Based Method: k-NN. 2.3 A Rule-Based Method: Decision Trees. 2.4 Further Reading. Basic Parametric Models and a Statistical Perspective on Learning 3.1 3.2 3.3 3.4 3.5 3.A 4 5 Machine Learning Exemplified. About This Book. Further Reading. Linear Regression. Classification and Logistic Regression. Polynomial Regression and Régularisation. Generalised Linear Models. Further Reading. Derivation of the Normal Equations. 1 2 10 12 13 13 19 25 36 37 37 45 54 57 60 60 Understanding, Evaluating, and Improving Performance 4.1 Expected New Data Error Enew: Performance in Production . 63 63 4.2 4.3 4.4 4.5 4.6 66 71 79 86 90
Estimating Enew. The Training Error-Generalisation Gap Decomposition of Anew . . The Bias-Variance Decomposition of Enew. Additional Tools for Evaluating Binary Classifiers. Further Reading. Learning Parametric Models 5.1 5.2 5.3 5.4 5.5 Principles of Parametric Modelling. Loss Functions and Likelihood-Based Models. Régularisation. Parameter Optimisation. Optimisation with Large Datasets. 91 91 96 109 112 124 v
Contents 5.6 5.7 6 Hyperparameter Optimisation . Further Reading. 129 131 Neural Networks and Deep Learning 6.1 The Neural Network Model. 133 6.2 6.3 6.4 6.5 6.A 7 8 Training a Neural Network. Convolutional Neural Networks . Dropout. Further Reading. Derivation of the Backpropagation Equations. 133 140 147 155 159 160 Ensemble Methods: Bagging and Boosting 163 7.1 7.2 7.3 7.4 7.5 Bagging. Random Forests. Boosting and AdaBoost. Gradient Boosting. Further Reading. 164 171 174 182 187 Non-linear Input Transformations and Kernels 8.1 Creating Features by Non-linear Input Transformations. 189 The Bayesian Approach and Gaussian Processes 217 189 8.2 Kernel Ridge
Regression. 192 8.3 Support Vector Regression. 197 8.4 Kernel Theory. 202 8.5 Support Vector Classification. 208 8.6 Further Reading. 213 8.A The Representer Theorem. 213 8.B Derivation of Support Vector Classification. 214 9 9.1 9.2 9.3 9.4 9.5 9.6 9.A The Bayesian Idea. 217 Bayesian Linear Regression.220 The Gaussian Process. 226 Practical Aspects of the Gaussian Process. 237 Other Bayesian Methods in Machine Learning. 242 Further Reading. 242 The Multivariate Gaussian Distribution . 243 10 Generative Models and Learning from Unlabelled Data 247 10.1 The Gaussian Mixture Model and Discriminant Analysis. 248 10.2 10.3 10.4 10.5 vi Cluster
Analysis. 259 Deep Generative Models. 268 Representation Learning and Dimensionality Reduction. 275 Further Reading. 285
Contents 11 User Aspects of Machine Learning 287 11.1 Defining the Machine Learning Problem. 287 11.2 Improving a Machine Learning Model. 291 11.3 What If We Cannot Collect More Data?. 299 11.4 Practical Data Issues. 303 11.5 Can I Trust my Machine Learning Model?.307 11.6 Further Reading. 308 12 Ethics in Machine Learning 309 12.1 Fairness and Error Functions. 309 12.2 Misleading Claims about Performance. 314 12.3 Limitations of Training Data.322 12.4 Further Reading. 326 Bibliography 327 Index 335 vii |
adam_txt |
Contents Acknowledgements ix Notation xi 1 Introduction 1.1 1.2 1.3 2 3 Supervised Learning: A First Approach 2.1 Supervised Machine Learning. 2.2 A Distance-Based Method: k-NN. 2.3 A Rule-Based Method: Decision Trees. 2.4 Further Reading. Basic Parametric Models and a Statistical Perspective on Learning 3.1 3.2 3.3 3.4 3.5 3.A 4 5 Machine Learning Exemplified. About This Book. Further Reading. Linear Regression. Classification and Logistic Regression. Polynomial Regression and Régularisation. Generalised Linear Models. Further Reading. Derivation of the Normal Equations. 1 2 10 12 13 13 19 25 36 37 37 45 54 57 60 60 Understanding, Evaluating, and Improving Performance 4.1 Expected New Data Error Enew: Performance in Production . 63 63 4.2 4.3 4.4 4.5 4.6 66 71 79 86 90
Estimating Enew. The Training Error-Generalisation Gap Decomposition of Anew . . The Bias-Variance Decomposition of Enew. Additional Tools for Evaluating Binary Classifiers. Further Reading. Learning Parametric Models 5.1 5.2 5.3 5.4 5.5 Principles of Parametric Modelling. Loss Functions and Likelihood-Based Models. Régularisation. Parameter Optimisation. Optimisation with Large Datasets. 91 91 96 109 112 124 v
Contents 5.6 5.7 6 Hyperparameter Optimisation . Further Reading. 129 131 Neural Networks and Deep Learning 6.1 The Neural Network Model. 133 6.2 6.3 6.4 6.5 6.A 7 8 Training a Neural Network. Convolutional Neural Networks . Dropout. Further Reading. Derivation of the Backpropagation Equations. 133 140 147 155 159 160 Ensemble Methods: Bagging and Boosting 163 7.1 7.2 7.3 7.4 7.5 Bagging. Random Forests. Boosting and AdaBoost. Gradient Boosting. Further Reading. 164 171 174 182 187 Non-linear Input Transformations and Kernels 8.1 Creating Features by Non-linear Input Transformations. 189 The Bayesian Approach and Gaussian Processes 217 189 8.2 Kernel Ridge
Regression. 192 8.3 Support Vector Regression. 197 8.4 Kernel Theory. 202 8.5 Support Vector Classification. 208 8.6 Further Reading. 213 8.A The Representer Theorem. 213 8.B Derivation of Support Vector Classification. 214 9 9.1 9.2 9.3 9.4 9.5 9.6 9.A The Bayesian Idea. 217 Bayesian Linear Regression.220 The Gaussian Process. 226 Practical Aspects of the Gaussian Process. 237 Other Bayesian Methods in Machine Learning. 242 Further Reading. 242 The Multivariate Gaussian Distribution . 243 10 Generative Models and Learning from Unlabelled Data 247 10.1 The Gaussian Mixture Model and Discriminant Analysis. 248 10.2 10.3 10.4 10.5 vi Cluster
Analysis. 259 Deep Generative Models. 268 Representation Learning and Dimensionality Reduction. 275 Further Reading. 285
Contents 11 User Aspects of Machine Learning 287 11.1 Defining the Machine Learning Problem. 287 11.2 Improving a Machine Learning Model. 291 11.3 What If We Cannot Collect More Data?. 299 11.4 Practical Data Issues. 303 11.5 Can I Trust my Machine Learning Model?.307 11.6 Further Reading. 308 12 Ethics in Machine Learning 309 12.1 Fairness and Error Functions. 309 12.2 Misleading Claims about Performance. 314 12.3 Limitations of Training Data.322 12.4 Further Reading. 326 Bibliography 327 Index 335 vii |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Lindholm, Andreas Wahlström, Niklas 1984- Lindsten, Fredrik Schön, Thomas B. 1977- |
author_GND | (DE-588)128952598 (DE-588)1258311712 (DE-588)1258742942 (DE-588)1258743671 |
author_facet | Lindholm, Andreas Wahlström, Niklas 1984- Lindsten, Fredrik Schön, Thomas B. 1977- |
author_role | aut aut aut aut |
author_sort | Lindholm, Andreas |
author_variant | a l al n w nw f l fl t b s tb tbs |
building | Verbundindex |
bvnumber | BV048209622 |
classification_rvk | ST 302 ST 300 ST 130 |
ctrlnum | (OCoLC)1315743869 (DE-599)HEB491889275 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV048209622</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240813</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220510s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108843607</subfield><subfield code="9">978-1-108-84360-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108843603</subfield><subfield code="9">1-108-84360-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108919371</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1315743869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB491889275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindholm, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128952598</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning</subfield><subfield code="b">a first course for engineers and scientists</subfield><subfield code="c">Andreas Lindholm (Annotell, Sweden), Niklas Wahlström (Uppsala University, Sweden), Fredrik Lindsten (Linköping University, Sweden), Thomas B. Schön (Uppsala University, Sweden)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 338 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 327-334</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahlström, Niklas</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1258311712</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lindsten, Fredrik</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1258742942</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schön, Thomas B.</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1258743671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Onlineausgabe, epub</subfield><subfield code="z">978-1-108-91937-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033590490&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033590490</subfield></datafield></record></collection> |
id | DE-604.BV048209622 |
illustrated | Illustrated |
index_date | 2024-07-03T19:48:09Z |
indexdate | 2024-08-14T04:00:32Z |
institution | BVB |
isbn | 9781108843607 1108843603 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033590490 |
oclc_num | 1315743869 |
open_access_boolean | |
owner | DE-83 DE-1050 DE-473 DE-BY-UBG DE-862 DE-BY-FWS DE-1043 DE-11 DE-521 DE-523 DE-573 |
owner_facet | DE-83 DE-1050 DE-473 DE-BY-UBG DE-862 DE-BY-FWS DE-1043 DE-11 DE-521 DE-523 DE-573 |
physical | xii, 338 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Lindholm, Andreas Wahlström, Niklas 1984- Lindsten, Fredrik Schön, Thomas B. 1977- Machine learning a first course for engineers and scientists Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine learning a first course for engineers and scientists |
title_auth | Machine learning a first course for engineers and scientists |
title_exact_search | Machine learning a first course for engineers and scientists |
title_exact_search_txtP | Machine learning a first course for engineers and scientists |
title_full | Machine learning a first course for engineers and scientists Andreas Lindholm (Annotell, Sweden), Niklas Wahlström (Uppsala University, Sweden), Fredrik Lindsten (Linköping University, Sweden), Thomas B. Schön (Uppsala University, Sweden) |
title_fullStr | Machine learning a first course for engineers and scientists Andreas Lindholm (Annotell, Sweden), Niklas Wahlström (Uppsala University, Sweden), Fredrik Lindsten (Linköping University, Sweden), Thomas B. Schön (Uppsala University, Sweden) |
title_full_unstemmed | Machine learning a first course for engineers and scientists Andreas Lindholm (Annotell, Sweden), Niklas Wahlström (Uppsala University, Sweden), Fredrik Lindsten (Linköping University, Sweden), Thomas B. Schön (Uppsala University, Sweden) |
title_short | Machine learning |
title_sort | machine learning a first course for engineers and scientists |
title_sub | a first course for engineers and scientists |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033590490&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lindholmandreas machinelearningafirstcourseforengineersandscientists AT wahlstromniklas machinelearningafirstcourseforengineersandscientists AT lindstenfredrik machinelearningafirstcourseforengineersandscientists AT schonthomasb machinelearningafirstcourseforengineersandscientists |
Inhaltsverzeichnis
Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 300 L745 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |