Natural language processing for corpus linguistics:
Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge elements
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-473 Volltext |
Zusammenfassung: | Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications |
Beschreibung: | Title from publisher's bibliographic system (viewed on 04 Mar 2022) |
Beschreibung: | 1 Online-Ressource (84 Seiten) |
ISBN: | 9781009070447 |
DOI: | 10.1017/9781009070447 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048203122 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220506s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009070447 |c Online |9 978-1-00-907044-7 | ||
024 | 7 | |a 10.1017/9781009070447 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009070447 | ||
035 | |a (OCoLC)1314905058 | ||
035 | |a (DE-599)BVBBV048203122 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 410.188 | |
084 | |a ES 900 |0 (DE-625)27926: |2 rvk | ||
084 | |a ES 940 |0 (DE-625)27934: |2 rvk | ||
084 | |a HF 450 |0 (DE-625)48914: |2 rvk | ||
100 | 1 | |a Dunn, Jonathan |d ca. 20./21. Jh. |0 (DE-588)1256969044 |4 aut | |
245 | 1 | 0 | |a Natural language processing for corpus linguistics |c Jonathan Dunn |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (84 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements | |
500 | |a Title from publisher's bibliographic system (viewed on 04 Mar 2022) | ||
520 | |a Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications | ||
650 | 4 | |a Corpora (Linguistics) / Data processing | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 0 | 7 | |a Automatische Sprachanalyse |0 (DE-588)4129935-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Korpus |g Linguistik |0 (DE-588)4165338-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Korpus |g Linguistik |0 (DE-588)4165338-5 |D s |
689 | 0 | 1 | |a Automatische Sprachanalyse |0 (DE-588)4129935-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-907443-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009070447 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033584078 | |
966 | e | |u https://doi.org/10.1017/9781009070447 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009070447 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1807956263187775488 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dunn, Jonathan ca. 20./21. Jh |
author_GND | (DE-588)1256969044 |
author_facet | Dunn, Jonathan ca. 20./21. Jh |
author_role | aut |
author_sort | Dunn, Jonathan ca. 20./21. Jh |
author_variant | j d jd |
building | Verbundindex |
bvnumber | BV048203122 |
classification_rvk | ES 900 ES 940 HF 450 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009070447 (OCoLC)1314905058 (DE-599)BVBBV048203122 |
dewey-full | 410.188 |
dewey-hundreds | 400 - Language |
dewey-ones | 410 - Linguistics |
dewey-raw | 410.188 |
dewey-search | 410.188 |
dewey-sort | 3410.188 |
dewey-tens | 410 - Linguistics |
discipline | Sprachwissenschaft Anglistik / Amerikanistik Literaturwissenschaft |
discipline_str_mv | Sprachwissenschaft Anglistik / Amerikanistik Literaturwissenschaft |
doi_str_mv | 10.1017/9781009070447 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048203122</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220506s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009070447</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-907044-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009070447</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009070447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1314905058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048203122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">410.188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ES 900</subfield><subfield code="0">(DE-625)27926:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ES 940</subfield><subfield code="0">(DE-625)27934:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">HF 450</subfield><subfield code="0">(DE-625)48914:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunn, Jonathan</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1256969044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural language processing for corpus linguistics</subfield><subfield code="c">Jonathan Dunn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (84 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 04 Mar 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corpora (Linguistics) / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Sprachanalyse</subfield><subfield code="0">(DE-588)4129935-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Korpus</subfield><subfield code="g">Linguistik</subfield><subfield code="0">(DE-588)4165338-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Korpus</subfield><subfield code="g">Linguistik</subfield><subfield code="0">(DE-588)4165338-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automatische Sprachanalyse</subfield><subfield code="0">(DE-588)4129935-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-907443-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009070447</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033584078</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009070447</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009070447</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048203122 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:47:11Z |
indexdate | 2024-08-21T00:50:53Z |
institution | BVB |
isbn | 9781009070447 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033584078 |
oclc_num | 1314905058 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (84 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements |
spelling | Dunn, Jonathan ca. 20./21. Jh. (DE-588)1256969044 aut Natural language processing for corpus linguistics Jonathan Dunn Cambridge Cambridge University Press 2022 1 Online-Ressource (84 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge elements Title from publisher's bibliographic system (viewed on 04 Mar 2022) Corpus analysis can be expanded and scaled up by incorporating computational methods from natural language processing. This Element shows how text classification and text similarity models can extend our ability to undertake corpus linguistics across very large corpora. These computational methods are becoming increasingly important as corpora grow too large for more traditional types of linguistic analysis. We draw on five case studies to show how and why to use computational methods, ranging from usage-based grammar to authorship analysis to using social media for corpus-based sociolinguistics. Each section is accompanied by an interactive code notebook that shows how to implement the analysis in Python. A stand-alone Python package is also available to help readers use these methods with their own data. Because large-scale analysis introduces new ethical problems, this Element pairs each new methodology with a discussion of potential ethical implications Corpora (Linguistics) / Data processing Natural language processing (Computer science) Automatische Sprachanalyse (DE-588)4129935-8 gnd rswk-swf Korpus Linguistik (DE-588)4165338-5 gnd rswk-swf Korpus Linguistik (DE-588)4165338-5 s Automatische Sprachanalyse (DE-588)4129935-8 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-00-907443-8 https://doi.org/10.1017/9781009070447 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dunn, Jonathan ca. 20./21. Jh Natural language processing for corpus linguistics Corpora (Linguistics) / Data processing Natural language processing (Computer science) Automatische Sprachanalyse (DE-588)4129935-8 gnd Korpus Linguistik (DE-588)4165338-5 gnd |
subject_GND | (DE-588)4129935-8 (DE-588)4165338-5 |
title | Natural language processing for corpus linguistics |
title_auth | Natural language processing for corpus linguistics |
title_exact_search | Natural language processing for corpus linguistics |
title_exact_search_txtP | Natural language processing for corpus linguistics |
title_full | Natural language processing for corpus linguistics Jonathan Dunn |
title_fullStr | Natural language processing for corpus linguistics Jonathan Dunn |
title_full_unstemmed | Natural language processing for corpus linguistics Jonathan Dunn |
title_short | Natural language processing for corpus linguistics |
title_sort | natural language processing for corpus linguistics |
topic | Corpora (Linguistics) / Data processing Natural language processing (Computer science) Automatische Sprachanalyse (DE-588)4129935-8 gnd Korpus Linguistik (DE-588)4165338-5 gnd |
topic_facet | Corpora (Linguistics) / Data processing Natural language processing (Computer science) Automatische Sprachanalyse Korpus Linguistik |
url | https://doi.org/10.1017/9781009070447 |
work_keys_str_mv | AT dunnjonathan naturallanguageprocessingforcorpuslinguistics |