Higher-order logic and type theory:
This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a typ...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined |
Beschreibung: | Title from publisher's bibliographic system (viewed on 21 Mar 2022) |
Beschreibung: | 1 Online-Ressource (79 Seiten) |
ISBN: | 9781108981804 |
DOI: | 10.1017/9781108981804 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048201767 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220506s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108981804 |c Online |9 978-1-108-98180-4 | ||
024 | 7 | |a 10.1017/9781108981804 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108981804 | ||
035 | |a (OCoLC)1314901014 | ||
035 | |a (DE-599)BVBBV048201767 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 511.3 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
100 | 1 | |a Bell, John L. |d 1945- |0 (DE-588)128411570 |4 aut | |
245 | 1 | 0 | |a Higher-order logic and type theory |c John L. Bell |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (79 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 21 Mar 2022) | ||
520 | |a This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined | ||
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Type theory | |
650 | 4 | |a Set theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-98690-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108981804 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033582758 | ||
966 | e | |u https://doi.org/10.1017/9781108981804 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108981804 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183967588417536 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bell, John L. 1945- |
author_GND | (DE-588)128411570 |
author_facet | Bell, John L. 1945- |
author_role | aut |
author_sort | Bell, John L. 1945- |
author_variant | j l b jl jlb |
building | Verbundindex |
bvnumber | BV048201767 |
classification_rvk | CC 2600 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108981804 (OCoLC)1314901014 (DE-599)BVBBV048201767 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
discipline_str_mv | Mathematik Philosophie |
doi_str_mv | 10.1017/9781108981804 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02369nmm a2200421zc 4500</leader><controlfield tag="001">BV048201767</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220506s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108981804</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-98180-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108981804</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108981804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1314901014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048201767</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bell, John L.</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)128411570</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher-order logic and type theory</subfield><subfield code="c">John L. Bell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (79 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 21 Mar 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Type theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-98690-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108981804</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033582758</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981804</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981804</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048201767 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:46:52Z |
indexdate | 2024-07-10T09:31:51Z |
institution | BVB |
isbn | 9781108981804 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033582758 |
oclc_num | 1314901014 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (79 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bell, John L. 1945- (DE-588)128411570 aut Higher-order logic and type theory John L. Bell Cambridge Cambridge University Press 2022 1 Online-Ressource (79 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 21 Mar 2022) This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined Logic, Symbolic and mathematical Type theory Set theory Erscheint auch als Druck-Ausgabe 978-1-108-98690-8 https://doi.org/10.1017/9781108981804 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bell, John L. 1945- Higher-order logic and type theory Logic, Symbolic and mathematical Type theory Set theory |
title | Higher-order logic and type theory |
title_auth | Higher-order logic and type theory |
title_exact_search | Higher-order logic and type theory |
title_exact_search_txtP | Higher-order logic and type theory |
title_full | Higher-order logic and type theory John L. Bell |
title_fullStr | Higher-order logic and type theory John L. Bell |
title_full_unstemmed | Higher-order logic and type theory John L. Bell |
title_short | Higher-order logic and type theory |
title_sort | higher order logic and type theory |
topic | Logic, Symbolic and mathematical Type theory Set theory |
topic_facet | Logic, Symbolic and mathematical Type theory Set theory |
url | https://doi.org/10.1017/9781108981804 |
work_keys_str_mv | AT belljohnl higherorderlogicandtypetheory |