Towards robustifying deep neural networks against adversarial, fringe and distorted examples:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
2022
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | xvii, 134 Seiten Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-14961 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047954600 | ||
003 | DE-604 | ||
005 | 20220511 | ||
007 | t| | ||
008 | 220426s2022 xx a||| m||| 00||| eng d | ||
035 | |a (OCoLC)1314907769 | ||
035 | |a (DE-599)BVBBV047954600 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Srinivasan, Vignesh |e Verfasser |0 (DE-588)1256102946 |4 aut | |
245 | 1 | 0 | |a Towards robustifying deep neural networks against adversarial, fringe and distorted examples |c vorgelegt von M.Sc. Vignesh Srinivasan |
264 | 1 | |a Berlin |c 2022 | |
300 | |a xvii, 134 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2021 | ||
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Robustheit |0 (DE-588)4126481-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 2 | |a Robustheit |0 (DE-588)4126481-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.14279/depositonce-14961 |w (DE-604)BV047954602 |
856 | 4 | 1 | |u https://doi.org/10.14279/depositonce-14961 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033335912 |
Datensatz im Suchindex
_version_ | 1823932149676376064 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Srinivasan, Vignesh |
author_GND | (DE-588)1256102946 |
author_facet | Srinivasan, Vignesh |
author_role | aut |
author_sort | Srinivasan, Vignesh |
author_variant | v s vs |
building | Verbundindex |
bvnumber | BV047954600 |
classification_rvk | ST 301 |
collection | ebook |
ctrlnum | (OCoLC)1314907769 (DE-599)BVBBV047954600 |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.14279/depositonce-14961 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047954600</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220511</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220426s2022 xx a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1314907769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047954600</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srinivasan, Vignesh</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1256102946</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards robustifying deep neural networks against adversarial, fringe and distorted examples</subfield><subfield code="c">vorgelegt von M.Sc. Vignesh Srinivasan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 134 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2021</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robustheit</subfield><subfield code="0">(DE-588)4126481-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Robustheit</subfield><subfield code="0">(DE-588)4126481-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.14279/depositonce-14961</subfield><subfield code="w">(DE-604)BV047954602</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.14279/depositonce-14961</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033335912</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047954600 |
illustrated | Illustrated |
index_date | 2024-07-03T19:38:32Z |
indexdate | 2025-02-13T09:00:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033335912 |
oclc_num | 1314907769 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | xvii, 134 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Srinivasan, Vignesh Verfasser (DE-588)1256102946 aut Towards robustifying deep neural networks against adversarial, fringe and distorted examples vorgelegt von M.Sc. Vignesh Srinivasan Berlin 2022 xvii, 134 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Berlin 2021 Deep Learning (DE-588)1135597375 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Robustheit (DE-588)4126481-2 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Neuronales Netz (DE-588)4226127-2 s Deep Learning (DE-588)1135597375 s Robustheit (DE-588)4126481-2 s DE-604 Erscheint auch als Online-Ausgabe 10.14279/depositonce-14961 (DE-604)BV047954602 https://doi.org/10.14279/depositonce-14961 Resolving-System kostenfrei Volltext |
spellingShingle | Srinivasan, Vignesh Towards robustifying deep neural networks against adversarial, fringe and distorted examples Deep Learning (DE-588)1135597375 gnd Neuronales Netz (DE-588)4226127-2 gnd Robustheit (DE-588)4126481-2 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4226127-2 (DE-588)4126481-2 (DE-588)4113937-9 |
title | Towards robustifying deep neural networks against adversarial, fringe and distorted examples |
title_auth | Towards robustifying deep neural networks against adversarial, fringe and distorted examples |
title_exact_search | Towards robustifying deep neural networks against adversarial, fringe and distorted examples |
title_exact_search_txtP | Towards robustifying deep neural networks against adversarial, fringe and distorted examples |
title_full | Towards robustifying deep neural networks against adversarial, fringe and distorted examples vorgelegt von M.Sc. Vignesh Srinivasan |
title_fullStr | Towards robustifying deep neural networks against adversarial, fringe and distorted examples vorgelegt von M.Sc. Vignesh Srinivasan |
title_full_unstemmed | Towards robustifying deep neural networks against adversarial, fringe and distorted examples vorgelegt von M.Sc. Vignesh Srinivasan |
title_short | Towards robustifying deep neural networks against adversarial, fringe and distorted examples |
title_sort | towards robustifying deep neural networks against adversarial fringe and distorted examples |
topic | Deep Learning (DE-588)1135597375 gnd Neuronales Netz (DE-588)4226127-2 gnd Robustheit (DE-588)4126481-2 gnd |
topic_facet | Deep Learning Neuronales Netz Robustheit Hochschulschrift |
url | https://doi.org/10.14279/depositonce-14961 |
work_keys_str_mv | AT srinivasanvignesh towardsrobustifyingdeepneuralnetworksagainstadversarialfringeanddistortedexamples |