Mathematical Modeling of Biological Systems: Geometry, Symmetry and Conservation Laws
Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematic...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
MDPI
2022
|
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783036527659 |
DOI: | 10.3390/books978-3-0365-2765-9 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047946252 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220420s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783036527659 |c Online, PDF |9 978-3-0365-2765-9 | ||
024 | 7 | |a 10.3390/books978-3-0365-2765-9 |2 doi | |
035 | |a (OCoLC)1312692686 | ||
035 | |a (DE-599)BVBBV047946252 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-210 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1028 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-863 |a DE-862 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
245 | 1 | 0 | |a Mathematical Modeling of Biological Systems |b Geometry, Symmetry and Conservation Laws |c Edited by: Federico Papa and Carmela Sinisgalli |
264 | 1 | |a Basel |b MDPI |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine. | ||
700 | 1 | |a Papa, Federico |4 edt | |
700 | 1 | |a Sinisgalli, Carmela |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-3-0365-2764-2 |
856 | 4 | 0 | |u https://directory.doabooks.org/handle/20.500.12854/78761 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.3390/books978-3-0365-2765-9 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-94-OAB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033327668 |
Datensatz im Suchindex
_version_ | 1813306096451846144 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Papa, Federico Sinisgalli, Carmela |
author2_role | edt edt |
author2_variant | f p fp c s cs |
author_facet | Papa, Federico Sinisgalli, Carmela |
building | Verbundindex |
bvnumber | BV047946252 |
collection | ZDB-94-OAB |
ctrlnum | (OCoLC)1312692686 (DE-599)BVBBV047946252 |
doi_str_mv | 10.3390/books978-3-0365-2765-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV047946252</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220420s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036527659</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-3-0365-2765-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/books978-3-0365-2765-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312692686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047946252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Modeling of Biological Systems</subfield><subfield code="b">Geometry, Symmetry and Conservation Laws</subfield><subfield code="c">Edited by: Federico Papa and Carmela Sinisgalli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">MDPI</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papa, Federico</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sinisgalli, Carmela</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-0365-2764-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://directory.doabooks.org/handle/20.500.12854/78761</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/books978-3-0365-2765-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-94-OAB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033327668</subfield></datafield></record></collection> |
id | DE-604.BV047946252 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:36:29Z |
indexdate | 2024-10-19T04:04:11Z |
institution | BVB |
isbn | 9783036527659 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033327668 |
oclc_num | 1312692686 |
open_access_boolean | 1 |
owner | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-94-OAB |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | MDPI |
record_format | marc |
spellingShingle | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws |
title | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws |
title_auth | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws |
title_exact_search | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws |
title_exact_search_txtP | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws |
title_full | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws Edited by: Federico Papa and Carmela Sinisgalli |
title_fullStr | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws Edited by: Federico Papa and Carmela Sinisgalli |
title_full_unstemmed | Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws Edited by: Federico Papa and Carmela Sinisgalli |
title_short | Mathematical Modeling of Biological Systems |
title_sort | mathematical modeling of biological systems geometry symmetry and conservation laws |
title_sub | Geometry, Symmetry and Conservation Laws |
url | https://directory.doabooks.org/handle/20.500.12854/78761 https://doi.org/10.3390/books978-3-0365-2765-9 |
work_keys_str_mv | AT papafederico mathematicalmodelingofbiologicalsystemsgeometrysymmetryandconservationlaws AT sinisgallicarmela mathematicalmodelingofbiologicalsystemsgeometrysymmetryandconservationlaws |