Comparing Probability Forecasts in Markov Regime Switching Business Cycle Models:

We evaluate techniques for comparing the ability of Markov regime switching (MRS) models to fit underlying regimes of a series of interest. This is particularly important in the business cycle literature where one may be interested in determining whether using leading indicators to allow transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Smith, Daniel R.. (VerfasserIn)
Weitere Verfasser: Layton, Allan (MitwirkendeR)
Format: Elektronisch Buchkapitel
Sprache:English
Veröffentlicht: Paris OECD Publishing 2007
Schlagworte:
Online-Zugang:DE-384
DE-473
DE-824
DE-29
DE-739
DE-355
DE-20
DE-1028
DE-1049
DE-521
DE-861
DE-898
DE-92
DE-91
DE-573
DE-19
URL des Erstveröffentlichers
Zusammenfassung:We evaluate techniques for comparing the ability of Markov regime switching (MRS) models to fit underlying regimes of a series of interest. This is particularly important in the business cycle literature where one may be interested in determining whether using leading indicators to allow transition probabilities to vary improves the ability of MRS models to fit the NBER business cycle chronology. This is typically done using the quadratic probability score, or QPS (Diebold and Rudebusch, 1989). Although it is possible to statistically compare the QPS statistics for two MRS models using the Diebold and Mariano (1995) (DM) test statistic for comparing forecasts, we find using a Monte Carlo experiment that the DM statistic tends to under-reject (the null of "no difference in forecast accuracy") when comparing MRS models. This we believe is because of the strong non-normality of the forecast errors of such models. Furthermore, using simulation-based inference we demonstrate that leading indicators improve the fit of an MRS model of the US business cycle chronology by 24 percent, such improvement having a p-value of 0.001
Beschreibung:1 Online-Ressource (20 Seiten) 16 x 23cm
DOI:10.1787/jbcma-v2007-art4-en

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen