Data-Driven, Information-Enabled Regulatory Delivery:
Industries and businesses are becoming increasingly digital, and the COVID-19 pandemic has further accelerated this trend. Regulators around the world are also experimenting with data-driven tools to apply and enforce rules in a more agile and targeted way. This report maps out several efforts under...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Industries and businesses are becoming increasingly digital, and the COVID-19 pandemic has further accelerated this trend. Regulators around the world are also experimenting with data-driven tools to apply and enforce rules in a more agile and targeted way. This report maps out several efforts undertaken jointly by the OECD and Italian regulators to develop and use artificial intelligence and machine learning tools in regulatory inspections and enforcement. It provides unique insights into the background processes and structures required for digital tools to perform predictive modelling, risk analysis and classification. It also highlights the challenges such tools bring, both in specific regulatory areas and to the broader goals of regulatory systems |
Beschreibung: | 1 Online-Ressource (37 Seiten) 21 x 28cm |
ISBN: | 9789264805118 9789264713093 9789264503939 |
DOI: | 10.1787/8f99ec8c-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047928297 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2021 xx o|||| 00||| eng d | ||
020 | |a 9789264805118 |9 978-92-64-80511-8 | ||
020 | |a 9789264713093 |9 978-92-64-71309-3 | ||
020 | |a 9789264503939 |9 978-92-64-50393-9 | ||
024 | 7 | |a 10.1787/8f99ec8c-en |2 doi | |
035 | |a (ZDB-13-SOC)068834977 | ||
035 | |a (OCoLC)1312711007 | ||
035 | |a (DE-599)BVBBV047928297 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
245 | 1 | 0 | |a Data-Driven, Information-Enabled Regulatory Delivery |c Organisation for Economic Co-operation and Development |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (37 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Industries and businesses are becoming increasingly digital, and the COVID-19 pandemic has further accelerated this trend. Regulators around the world are also experimenting with data-driven tools to apply and enforce rules in a more agile and targeted way. This report maps out several efforts undertaken jointly by the OECD and Italian regulators to develop and use artificial intelligence and machine learning tools in regulatory inspections and enforcement. It provides unique insights into the background processes and structures required for digital tools to perform predictive modelling, risk analysis and classification. It also highlights the challenges such tools bring, both in specific regulatory areas and to the broader goals of regulatory systems | ||
650 | 4 | |a Science and Technology | |
650 | 4 | |a Governance | |
650 | 4 | |a Italy | |
856 | 4 | 0 | |u https://doi.org/10.1787/8f99ec8c-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033309790 |
Datensatz im Suchindex
_version_ | 1818805950695342080 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
building | Verbundindex |
bvnumber | BV047928297 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)068834977 (OCoLC)1312711007 (DE-599)BVBBV047928297 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/8f99ec8c-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047928297</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264805118</subfield><subfield code="9">978-92-64-80511-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264713093</subfield><subfield code="9">978-92-64-71309-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264503939</subfield><subfield code="9">978-92-64-50393-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/8f99ec8c-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)068834977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312711007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047928297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-Driven, Information-Enabled Regulatory Delivery</subfield><subfield code="c">Organisation for Economic Co-operation and Development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (37 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Industries and businesses are becoming increasingly digital, and the COVID-19 pandemic has further accelerated this trend. Regulators around the world are also experimenting with data-driven tools to apply and enforce rules in a more agile and targeted way. This report maps out several efforts undertaken jointly by the OECD and Italian regulators to develop and use artificial intelligence and machine learning tools in regulatory inspections and enforcement. It provides unique insights into the background processes and structures required for digital tools to perform predictive modelling, risk analysis and classification. It also highlights the challenges such tools bring, both in specific regulatory areas and to the broader goals of regulatory systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Governance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Italy</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/8f99ec8c-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033309790</subfield></datafield></record></collection> |
id | DE-604.BV047928297 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:34:54Z |
indexdate | 2024-12-18T19:02:01Z |
institution | BVB |
isbn | 9789264805118 9789264713093 9789264503939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033309790 |
oclc_num | 1312711007 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (37 Seiten) 21 x 28cm |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
spelling | Data-Driven, Information-Enabled Regulatory Delivery Organisation for Economic Co-operation and Development Paris OECD Publishing 2021 1 Online-Ressource (37 Seiten) 21 x 28cm txt rdacontent c rdamedia cr rdacarrier Industries and businesses are becoming increasingly digital, and the COVID-19 pandemic has further accelerated this trend. Regulators around the world are also experimenting with data-driven tools to apply and enforce rules in a more agile and targeted way. This report maps out several efforts undertaken jointly by the OECD and Italian regulators to develop and use artificial intelligence and machine learning tools in regulatory inspections and enforcement. It provides unique insights into the background processes and structures required for digital tools to perform predictive modelling, risk analysis and classification. It also highlights the challenges such tools bring, both in specific regulatory areas and to the broader goals of regulatory systems Science and Technology Governance Italy https://doi.org/10.1787/8f99ec8c-en Verlag kostenfrei Volltext |
spellingShingle | Data-Driven, Information-Enabled Regulatory Delivery Science and Technology Governance Italy |
title | Data-Driven, Information-Enabled Regulatory Delivery |
title_auth | Data-Driven, Information-Enabled Regulatory Delivery |
title_exact_search | Data-Driven, Information-Enabled Regulatory Delivery |
title_exact_search_txtP | Data-Driven, Information-Enabled Regulatory Delivery |
title_full | Data-Driven, Information-Enabled Regulatory Delivery Organisation for Economic Co-operation and Development |
title_fullStr | Data-Driven, Information-Enabled Regulatory Delivery Organisation for Economic Co-operation and Development |
title_full_unstemmed | Data-Driven, Information-Enabled Regulatory Delivery Organisation for Economic Co-operation and Development |
title_short | Data-Driven, Information-Enabled Regulatory Delivery |
title_sort | data driven information enabled regulatory delivery |
topic | Science and Technology Governance Italy |
topic_facet | Science and Technology Governance Italy |
url | https://doi.org/10.1787/8f99ec8c-en |