Practical AI for business leaders, product managers, and entrepreneurs:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston ; Berlin
De Gruyter
[2022]
|
Schriftenreihe: | Business and economics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 221 Seiten Illustrationen, Diagramme |
ISBN: | 9781501514647 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047926584 | ||
003 | DE-604 | ||
005 | 20220512 | ||
007 | t | ||
008 | 220412s2022 gw a||| |||| 00||| eng d | ||
020 | |a 9781501514647 |c pbk |9 978-1-5015-1464-7 | ||
035 | |a (OCoLC)1312711367 | ||
035 | |a (DE-599)BVBBV047926584 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-384 |a DE-29T |a DE-M347 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
100 | 1 | |a Essa, Alfred |e Verfasser |0 (DE-588)1254812377 |4 aut | |
245 | 1 | 0 | |a Practical AI for business leaders, product managers, and entrepreneurs |c Alfred Essa and Shirin Mojarad |
264 | 1 | |a Boston ; Berlin |b De Gruyter |c [2022] | |
300 | |a XVII, 221 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Business and economics | |
650 | 0 | 7 | |a Unternehmen |0 (DE-588)4061963-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unternehmen |0 (DE-588)4061963-1 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mojarad, Shirin |e Verfasser |0 (DE-588)1254810056 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-5015-0573-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-5015-0584-3 |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033308103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033308103 |
Datensatz im Suchindex
_version_ | 1804183562647240704 |
---|---|
adam_text | Contents Acknowledgments---- VII Preface — XV 1 1.1 լ.շ 1.3 1.4 Introduction---- 1 Artificial Intelligence---- 1 What Is Machine Learning?------ 3 Areas of Machine Learning----- 4 Machine Learning Workflow------5 Part I: Machine Learning I 2 2.1 2.2 2.3 2.4 2.5 2.6 Simple Linear Regression - Concept — 9 Bird’s Eye View---- 9 Fundamental Equation of SLR---- 14 Some Assumptions of Simple Linear Regression---- 15 Case Study: Is Earning Related to Learning?---- 17 Interpreting Regression---- 20 Summary---- 22 3 3.1 3.2 3.3 3.4 3.5 3.6 Simple Linear Regression - Theory — 23 Some Basics of Measuring Distance---- 23 Total Absolute Error (TAE)---- 26 Residual Sum of Squares (RSS)--- 27 Mean Squared Error---- 28 Analytical vs. Numerical Solutions in Machine Learning Summary — 30 4 Simple Linear Regression - Practice — 31 5 5.1 5.2 5.3 5.4 К-Nearest Neighbors (KNN) - Concept---- 34 Bird’s Eye View---- 34 Prediction Structure---- 35 Case Study: To Loan or Not to Loan---- 38 Summary---- 42 6 6.1 6.2 К-Nearest Neighbors (KNN) - Theory---- 43 Distance Metrics---- 43 Choosing к in KNN---- 50
Λ ------ 6.3 6.4 7 Contents ML Pipelines, Hyperparameters-----52 Summary-----52 К-Nearest Neighbors (KNN) - Practice — 53 Partii: Model Assessment 8 8.1 8.2 8.3 8.4 8.5 9 Model Assessment - Bias-Variance Tradeoff — 59 Train-Test Split-----59 /Г-Fold Cross-Validation-----60 Underfit and Overfit-----60 Bias-Variance Tradeoff — 64 Summary----- 65 Model Assessment-Regression — 66 9.1 9.2 9.3 9.3.1 9.4 Mean Squared Error-----66 R2 - Intuition------- 67 R2 - Computation — 70 Calculating/?2------- 72 Interpreting/?2------- 73 9.5 Summary----- 74 10 10.1 10.2 10.3 10.4 10.5 Model Assessment - Classification — 75 Accuracy-----75 Confusion Matrix-----76 Precision and Recall — 77 ROC/AUC Curve------79 Summary — 81 Part III: Machine Learning II 11 11.1 11.2 11.3 11.4 11.5 12 12.1 Multiple Linear Regression - Concept — 85 Bird’s Eye View------ 85 Multiple Regression Workflow------88 Case Study: Does Sleep Improve Academic Performance? Interpreting the Regression Equation-----95 Summary — 96 Multiple Linear Regression - Theory — 97 Standardized Coefficients — 97
Contents — XI ձ2,2 12,3 Multiple Linear Regression Diagnostics Checklist---- 100 Summary----- 106 13 Multiple Linear Regression - Practice---- 108 14 14.1 14.2 14.3 14.4 Logistic Regression - Concept---- 111 Bird’s Eye View---- 111 Probabilities and Decision Making---- 112 Case Study: Credit Card Payments---- 114 Summary---- 118 15 15.1 15.2 15.3 15.4 15.5 15.6 Logistic Regression - Theory---- 119 Logistic Regression Function----119 Odds, Odds Ratio, and Logit---- 122 Logistic Regression Equation in Logit Form---- 123 Interpreting the Coefficients-----124 Derivation of the Logistic Regression Equation as Log Odds---- 125 Summary---- 126 16 Logistic Regression - Practice 17 17.1 17.2 17.3 /f-Means - Concept-----131 Bird’s Eye View---- 131 Case Study: Marketing Segmentation---- 133 Summary----- 135 18 18.1 18.2 18.3 ff-Means - Theory----- 136 Expectation - Maximization----- 136 Choice of К---- 139 Summary-----142 19 ff-Means - Practice-----144 127 Part IV: Deep Learning 20 20.1 20.2 20.3 Deep Learning - Bird’s Eye View---- 149 Foundational Principles----- 149 From Evidence to Judgment---- 150 Summary-----152 21 Neurons---- 154
XII ----- Contents 21.1 Neurons as Functions----- 154 21.1.1 Activation Function Computation----- 158 21.2 Mathematics of Neural Computation----- 158 21.3 Linear Algebra for Neural Computation----- 159 21.4 Neural Computation in Matrix Form----- 162 21.5 Summary----- 163 22 Neurons - Practice----- 164 23 Network Architecture----- 167 23.1 Layers----- 167 23.2 Parameters----- 168 23.3 Hyperparameters---- 171 23.4 Summary----- 171 24 Network Architecture - Practice —172 25 Forward Propagation —174 25.1 Forward Propagation Flow----- 174 25.2 Function Composition----- 174 25.3 Forward Propagation Computation----- 176 25.4 Computation Worked Example------178 25.5 Summary----- 180 26 Forward Propagation - Practice —181 27 Loss Function----- 185 27.1 A Game of Arrows---- 185 27.2 Common Loss Functions in Deep Learning —186 27.3 Summary----- 190 28 Loss Function - Practice —191 29 Backward Propagation —194 29.1 Computation as Gears —194 29.2 Gradient Descent-----195 29.3 Gradient Descent for Simple Linear Regression----- 197 29.4 Gradients and Backpropagation —199 29.5 Summary----- 200 30 Backward Propagation - Practice — 201
Contents 31 Deep Learning-Practice----- 205 List of Figures----- 209 List of Tables----- 215 About the Authors----- 217 Index----- 219 ХШ
|
adam_txt |
Contents Acknowledgments---- VII Preface — XV 1 1.1 լ.շ 1.3 1.4 Introduction---- 1 Artificial Intelligence---- 1 What Is Machine Learning?------ 3 Areas of Machine Learning----- 4 Machine Learning Workflow------5 Part I: Machine Learning I 2 2.1 2.2 2.3 2.4 2.5 2.6 Simple Linear Regression - Concept — 9 Bird’s Eye View---- 9 Fundamental Equation of SLR---- 14 Some Assumptions of Simple Linear Regression---- 15 Case Study: Is Earning Related to Learning?---- 17 Interpreting Regression---- 20 Summary---- 22 3 3.1 3.2 3.3 3.4 3.5 3.6 Simple Linear Regression - Theory — 23 Some Basics of Measuring Distance---- 23 Total Absolute Error (TAE)---- 26 Residual Sum of Squares (RSS)--- 27 Mean Squared Error---- 28 Analytical vs. Numerical Solutions in Machine Learning Summary — 30 4 Simple Linear Regression - Practice — 31 5 5.1 5.2 5.3 5.4 К-Nearest Neighbors (KNN) - Concept---- 34 Bird’s Eye View---- 34 Prediction Structure---- 35 Case Study: To Loan or Not to Loan---- 38 Summary---- 42 6 6.1 6.2 К-Nearest Neighbors (KNN) - Theory---- 43 Distance Metrics---- 43 Choosing к in KNN---- 50
Λ ------ 6.3 6.4 7 Contents ML Pipelines, Hyperparameters-----52 Summary-----52 К-Nearest Neighbors (KNN) - Practice — 53 Partii: Model Assessment 8 8.1 8.2 8.3 8.4 8.5 9 Model Assessment - Bias-Variance Tradeoff — 59 Train-Test Split-----59 /Г-Fold Cross-Validation-----60 Underfit and Overfit-----60 Bias-Variance Tradeoff — 64 Summary----- 65 Model Assessment-Regression — 66 9.1 9.2 9.3 9.3.1 9.4 Mean Squared Error-----66 R2 - Intuition------- 67 R2 - Computation — 70 Calculating/?2------- 72 Interpreting/?2------- 73 9.5 Summary----- 74 10 10.1 10.2 10.3 10.4 10.5 Model Assessment - Classification — 75 Accuracy-----75 Confusion Matrix-----76 Precision and Recall — 77 ROC/AUC Curve------79 Summary — 81 Part III: Machine Learning II 11 11.1 11.2 11.3 11.4 11.5 12 12.1 Multiple Linear Regression - Concept — 85 Bird’s Eye View------ 85 Multiple Regression Workflow------88 Case Study: Does Sleep Improve Academic Performance? Interpreting the Regression Equation-----95 Summary — 96 Multiple Linear Regression - Theory — 97 Standardized Coefficients — 97
Contents — XI ձ2,2 12,3 Multiple Linear Regression Diagnostics Checklist---- 100 Summary----- 106 13 Multiple Linear Regression - Practice---- 108 14 14.1 14.2 14.3 14.4 Logistic Regression - Concept---- 111 Bird’s Eye View---- 111 Probabilities and Decision Making---- 112 Case Study: Credit Card Payments---- 114 Summary---- 118 15 15.1 15.2 15.3 15.4 15.5 15.6 Logistic Regression - Theory---- 119 Logistic Regression Function----119 Odds, Odds Ratio, and Logit---- 122 Logistic Regression Equation in Logit Form---- 123 Interpreting the Coefficients-----124 Derivation of the Logistic Regression Equation as Log Odds---- 125 Summary---- 126 16 Logistic Regression - Practice 17 17.1 17.2 17.3 /f-Means - Concept-----131 Bird’s Eye View---- 131 Case Study: Marketing Segmentation---- 133 Summary----- 135 18 18.1 18.2 18.3 ff-Means - Theory----- 136 Expectation - Maximization----- 136 Choice of К---- 139 Summary-----142 19 ff-Means - Practice-----144 127 Part IV: Deep Learning 20 20.1 20.2 20.3 Deep Learning - Bird’s Eye View---- 149 Foundational Principles----- 149 From Evidence to Judgment---- 150 Summary-----152 21 Neurons---- 154
XII ----- Contents 21.1 Neurons as Functions----- 154 21.1.1 Activation Function Computation----- 158 21.2 Mathematics of Neural Computation----- 158 21.3 Linear Algebra for Neural Computation----- 159 21.4 Neural Computation in Matrix Form----- 162 21.5 Summary----- 163 22 Neurons - Practice----- 164 23 Network Architecture----- 167 23.1 Layers----- 167 23.2 Parameters----- 168 23.3 Hyperparameters---- 171 23.4 Summary----- 171 24 Network Architecture - Practice —172 25 Forward Propagation —174 25.1 Forward Propagation Flow----- 174 25.2 Function Composition----- 174 25.3 Forward Propagation Computation----- 176 25.4 Computation Worked Example------178 25.5 Summary----- 180 26 Forward Propagation - Practice —181 27 Loss Function----- 185 27.1 A Game of Arrows---- 185 27.2 Common Loss Functions in Deep Learning —186 27.3 Summary----- 190 28 Loss Function - Practice —191 29 Backward Propagation —194 29.1 Computation as Gears —194 29.2 Gradient Descent-----195 29.3 Gradient Descent for Simple Linear Regression----- 197 29.4 Gradients and Backpropagation —199 29.5 Summary----- 200 30 Backward Propagation - Practice — 201
Contents 31 Deep Learning-Practice----- 205 List of Figures----- 209 List of Tables----- 215 About the Authors----- 217 Index----- 219 ХШ |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Essa, Alfred Mojarad, Shirin |
author_GND | (DE-588)1254812377 (DE-588)1254810056 |
author_facet | Essa, Alfred Mojarad, Shirin |
author_role | aut aut |
author_sort | Essa, Alfred |
author_variant | a e ae s m sm |
building | Verbundindex |
bvnumber | BV047926584 |
classification_rvk | ST 300 QH 500 |
ctrlnum | (OCoLC)1312711367 (DE-599)BVBBV047926584 |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01755nam a22004098c 4500</leader><controlfield tag="001">BV047926584</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220512 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220412s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781501514647</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-5015-1464-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312711367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047926584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Essa, Alfred</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1254812377</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical AI for business leaders, product managers, and entrepreneurs</subfield><subfield code="c">Alfred Essa and Shirin Mojarad</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 221 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Business and economics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unternehmen</subfield><subfield code="0">(DE-588)4061963-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mojarad, Shirin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1254810056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-5015-0573-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-5015-0584-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033308103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033308103</subfield></datafield></record></collection> |
id | DE-604.BV047926584 |
illustrated | Illustrated |
index_date | 2024-07-03T19:34:33Z |
indexdate | 2024-07-10T09:25:25Z |
institution | BVB |
isbn | 9781501514647 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033308103 |
oclc_num | 1312711367 |
open_access_boolean | |
owner | DE-384 DE-29T DE-M347 |
owner_facet | DE-384 DE-29T DE-M347 |
physical | XVII, 221 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series2 | Business and economics |
spelling | Essa, Alfred Verfasser (DE-588)1254812377 aut Practical AI for business leaders, product managers, and entrepreneurs Alfred Essa and Shirin Mojarad Boston ; Berlin De Gruyter [2022] XVII, 221 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Business and economics Unternehmen (DE-588)4061963-1 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Unternehmen (DE-588)4061963-1 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Mojarad, Shirin Verfasser (DE-588)1254810056 aut Erscheint auch als Online-Ausgabe, PDF 978-1-5015-0573-7 Erscheint auch als Online-Ausgabe, EPUB 978-1-5015-0584-3 Digitalisierung UB Augsburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033308103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Essa, Alfred Mojarad, Shirin Practical AI for business leaders, product managers, and entrepreneurs Unternehmen (DE-588)4061963-1 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4061963-1 (DE-588)4033447-8 |
title | Practical AI for business leaders, product managers, and entrepreneurs |
title_auth | Practical AI for business leaders, product managers, and entrepreneurs |
title_exact_search | Practical AI for business leaders, product managers, and entrepreneurs |
title_exact_search_txtP | Practical AI for business leaders, product managers, and entrepreneurs |
title_full | Practical AI for business leaders, product managers, and entrepreneurs Alfred Essa and Shirin Mojarad |
title_fullStr | Practical AI for business leaders, product managers, and entrepreneurs Alfred Essa and Shirin Mojarad |
title_full_unstemmed | Practical AI for business leaders, product managers, and entrepreneurs Alfred Essa and Shirin Mojarad |
title_short | Practical AI for business leaders, product managers, and entrepreneurs |
title_sort | practical ai for business leaders product managers and entrepreneurs |
topic | Unternehmen (DE-588)4061963-1 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Unternehmen Künstliche Intelligenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033308103&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT essaalfred practicalaiforbusinessleadersproductmanagersandentrepreneurs AT mojaradshirin practicalaiforbusinessleadersproductmanagersandentrepreneurs |