Computational topology for data analysis:
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text intr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 UBG01 Volltext |
Zusammenfassung: | Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions - like zigzag persistence and multiparameter persistence - and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks. |
Beschreibung: | Title from publisher's bibliographic system (viewed on 18 Feb 2022) |
Beschreibung: | 1 Online-Ressource (xix, 433 Seiten) |
ISBN: | 9781009099950 |
DOI: | 10.1017/9781009099950 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047926559 | ||
003 | DE-604 | ||
005 | 20221205 | ||
007 | cr|uuu---uuuuu | ||
008 | 220412s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009099950 |c Online |9 978-1-00-909995-0 | ||
024 | 7 | |a 10.1017/9781009099950 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009099950 | ||
035 | |a (OCoLC)1312708964 | ||
035 | |a (DE-599)BVBBV047926559 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-91 | ||
082 | 0 | |a 514/.7 | |
100 | 1 | |a Dey, Tamal |d 1964- |0 (DE-588)138060134 |4 aut | |
245 | 1 | 0 | |a Computational topology for data analysis |c Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xix, 433 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 18 Feb 2022) | ||
520 | |a Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions - like zigzag persistence and multiparameter persistence - and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks. | ||
650 | 4 | |a Topology | |
700 | 1 | |a Wang, Yusu |d 1976- |0 (DE-588)1253963703 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-909816-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009099950 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033308080 | ||
966 | e | |u https://doi.org/10.1017/9781009099950 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099950 |l FHN01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099950 |l TUM01 |p ZDB-20-CBO |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099950 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183562603200512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dey, Tamal 1964- Wang, Yusu 1976- |
author_GND | (DE-588)138060134 (DE-588)1253963703 |
author_facet | Dey, Tamal 1964- Wang, Yusu 1976- |
author_role | aut aut |
author_sort | Dey, Tamal 1964- |
author_variant | t d td y w yw |
building | Verbundindex |
bvnumber | BV047926559 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009099950 (OCoLC)1312708964 (DE-599)BVBBV047926559 |
dewey-full | 514/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.7 |
dewey-search | 514/.7 |
dewey-sort | 3514 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009099950 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02840nmm a2200421zc 4500</leader><controlfield tag="001">BV047926559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220412s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009099950</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-909995-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009099950</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009099950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312708964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047926559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dey, Tamal</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)138060134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational topology for data analysis</subfield><subfield code="c">Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 433 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 18 Feb 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions - like zigzag persistence and multiparameter persistence - and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yusu</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1253963703</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-909816-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009099950</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033308080</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099950</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099950</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099950</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099950</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047926559 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:34:33Z |
indexdate | 2024-07-10T09:25:25Z |
institution | BVB |
isbn | 9781009099950 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033308080 |
oclc_num | 1312708964 |
open_access_boolean | |
owner | DE-12 DE-92 DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 433 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO TUM_Paketkauf_2022 ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Dey, Tamal 1964- (DE-588)138060134 aut Computational topology for data analysis Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego Cambridge Cambridge University Press 2022 1 Online-Ressource (xix, 433 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 18 Feb 2022) Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions - like zigzag persistence and multiparameter persistence - and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks. Topology Wang, Yusu 1976- (DE-588)1253963703 aut Erscheint auch als Druck-Ausgabe 978-1-00-909816-8 https://doi.org/10.1017/9781009099950 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dey, Tamal 1964- Wang, Yusu 1976- Computational topology for data analysis Topology |
title | Computational topology for data analysis |
title_auth | Computational topology for data analysis |
title_exact_search | Computational topology for data analysis |
title_exact_search_txtP | Computational topology for data analysis |
title_full | Computational topology for data analysis Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego |
title_fullStr | Computational topology for data analysis Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego |
title_full_unstemmed | Computational topology for data analysis Tamal Krishna Dey, Purdue University, Yusu Wang, University of California, San Diego |
title_short | Computational topology for data analysis |
title_sort | computational topology for data analysis |
topic | Topology |
topic_facet | Topology |
url | https://doi.org/10.1017/9781009099950 |
work_keys_str_mv | AT deytamal computationaltopologyfordataanalysis AT wangyusu computationaltopologyfordataanalysis |