Quasi-interpolation:
Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
37 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBY01 Volltext |
Zusammenfassung: | Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering |
Beschreibung: | Title from publisher's bibliographic system (viewed on 25 Feb 2022) |
Beschreibung: | 1 Online-Ressource (xiii, 275 Seiten) |
ISBN: | 9781139680523 |
DOI: | 10.1017/9781139680523 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047925996 | ||
003 | DE-604 | ||
005 | 20230302 | ||
007 | cr|uuu---uuuuu | ||
008 | 220412s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781139680523 |c Online |9 978-1-139-68052-3 | ||
024 | 7 | |a 10.1017/9781139680523 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139680523 | ||
035 | |a (OCoLC)1312710870 | ||
035 | |a (DE-599)BVBBV047925996 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-706 | ||
082 | 0 | |a 511/.422 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Buhmann, Martin |d 1963- |0 (DE-588)133564843 |4 aut | |
245 | 1 | 0 | |a Quasi-interpolation |c Martin Buhmann, Janin Jäger |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xiii, 275 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics | |
490 | 0 | |a 37 | |
500 | |a Title from publisher's bibliographic system (viewed on 25 Feb 2022) | ||
520 | |a Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering | ||
650 | 4 | |a Interpolation | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Scattered-Data-Interpolation |0 (DE-588)4723172-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Radiale Basisfunktion |0 (DE-588)4380647-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrdimensionale Interpolation |0 (DE-588)4221362-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glättung |0 (DE-588)4157404-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Interpolation |0 (DE-588)4182396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Scattered-Data-Interpolation |0 (DE-588)4723172-5 |D s |
689 | 0 | 1 | |a Mehrdimensionale Interpolation |0 (DE-588)4221362-9 |D s |
689 | 0 | 2 | |a Spline-Interpolation |0 (DE-588)4182396-5 |D s |
689 | 0 | 3 | |a Glättung |0 (DE-588)4157404-7 |D s |
689 | 0 | 4 | |a Radiale Basisfunktion |0 (DE-588)4380647-8 |D s |
689 | 0 | 5 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |D s |
689 | 0 | 6 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jäger, Janin |d 1988- |0 (DE-588)1175481939 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-07263-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139680523 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033307531 | ||
966 | e | |u https://doi.org/10.1017/9781139680523 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139680523 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139680523 |l UBY01 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf22 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183561665773568 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Buhmann, Martin 1963- Jäger, Janin 1988- |
author_GND | (DE-588)133564843 (DE-588)1175481939 |
author_facet | Buhmann, Martin 1963- Jäger, Janin 1988- |
author_role | aut aut |
author_sort | Buhmann, Martin 1963- |
author_variant | m b mb j j jj |
building | Verbundindex |
bvnumber | BV047925996 |
classification_rvk | SK 470 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139680523 (OCoLC)1312710870 (DE-599)BVBBV047925996 |
dewey-full | 511/.422 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.422 |
dewey-search | 511/.422 |
dewey-sort | 3511 3422 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781139680523 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03709nmm a2200625zc 4500</leader><controlfield tag="001">BV047925996</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230302 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220412s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139680523</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-68052-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139680523</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139680523</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312710870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047925996</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.422</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buhmann, Martin</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)133564843</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-interpolation</subfield><subfield code="c">Martin Buhmann, Janin Jäger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 275 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">37</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 25 Feb 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Scattered-Data-Interpolation</subfield><subfield code="0">(DE-588)4723172-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radiale Basisfunktion</subfield><subfield code="0">(DE-588)4380647-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrdimensionale Interpolation</subfield><subfield code="0">(DE-588)4221362-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Scattered-Data-Interpolation</subfield><subfield code="0">(DE-588)4723172-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrdimensionale Interpolation</subfield><subfield code="0">(DE-588)4221362-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Radiale Basisfunktion</subfield><subfield code="0">(DE-588)4380647-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jäger, Janin</subfield><subfield code="d">1988-</subfield><subfield code="0">(DE-588)1175481939</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-07263-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033307531</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139680523</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047925996 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:34:25Z |
indexdate | 2024-07-10T09:25:24Z |
institution | BVB |
isbn | 9781139680523 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033307531 |
oclc_num | 1312710870 |
open_access_boolean | |
owner | DE-12 DE-92 DE-706 |
owner_facet | DE-12 DE-92 DE-706 |
physical | 1 Online-Ressource (xiii, 275 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBY_PDA_CBO_Kauf22 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics 37 |
spelling | Buhmann, Martin 1963- (DE-588)133564843 aut Quasi-interpolation Martin Buhmann, Janin Jäger Cambridge Cambridge University Press 2022 1 Online-Ressource (xiii, 275 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 37 Title from publisher's bibliographic system (viewed on 25 Feb 2022) Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering Interpolation Wavelet (DE-588)4215427-3 gnd rswk-swf Scattered-Data-Interpolation (DE-588)4723172-5 gnd rswk-swf Radiale Basisfunktion (DE-588)4380647-8 gnd rswk-swf Mehrdimensionale Interpolation (DE-588)4221362-9 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 gnd rswk-swf Glättung (DE-588)4157404-7 gnd rswk-swf Spline-Interpolation (DE-588)4182396-5 gnd rswk-swf Scattered-Data-Interpolation (DE-588)4723172-5 s Mehrdimensionale Interpolation (DE-588)4221362-9 s Spline-Interpolation (DE-588)4182396-5 s Glättung (DE-588)4157404-7 s Radiale Basisfunktion (DE-588)4380647-8 s Lagrange-Funktion (DE-588)4166459-0 s Wavelet (DE-588)4215427-3 s DE-604 Jäger, Janin 1988- (DE-588)1175481939 aut Erscheint auch als Druck-Ausgabe 978-1-107-07263-3 https://doi.org/10.1017/9781139680523 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Buhmann, Martin 1963- Jäger, Janin 1988- Quasi-interpolation Interpolation Wavelet (DE-588)4215427-3 gnd Scattered-Data-Interpolation (DE-588)4723172-5 gnd Radiale Basisfunktion (DE-588)4380647-8 gnd Mehrdimensionale Interpolation (DE-588)4221362-9 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Glättung (DE-588)4157404-7 gnd Spline-Interpolation (DE-588)4182396-5 gnd |
subject_GND | (DE-588)4215427-3 (DE-588)4723172-5 (DE-588)4380647-8 (DE-588)4221362-9 (DE-588)4166459-0 (DE-588)4157404-7 (DE-588)4182396-5 |
title | Quasi-interpolation |
title_auth | Quasi-interpolation |
title_exact_search | Quasi-interpolation |
title_exact_search_txtP | Quasi-interpolation |
title_full | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_fullStr | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_full_unstemmed | Quasi-interpolation Martin Buhmann, Janin Jäger |
title_short | Quasi-interpolation |
title_sort | quasi interpolation |
topic | Interpolation Wavelet (DE-588)4215427-3 gnd Scattered-Data-Interpolation (DE-588)4723172-5 gnd Radiale Basisfunktion (DE-588)4380647-8 gnd Mehrdimensionale Interpolation (DE-588)4221362-9 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Glättung (DE-588)4157404-7 gnd Spline-Interpolation (DE-588)4182396-5 gnd |
topic_facet | Interpolation Wavelet Scattered-Data-Interpolation Radiale Basisfunktion Mehrdimensionale Interpolation Lagrange-Funktion Glättung Spline-Interpolation |
url | https://doi.org/10.1017/9781139680523 |
work_keys_str_mv | AT buhmannmartin quasiinterpolation AT jagerjanin quasiinterpolation |