Optimal input signals for parameter estimation: in linear systems with spatio-temporal dynamics
The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBY01 UPA01 Volltext |
Zusammenfassung: | The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented |
Beschreibung: | 1 Online-Ressource (XI, 184 Seiten) |
ISBN: | 9783110351040 |
DOI: | 10.1515/9783110351040 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047922146 | ||
003 | DE-604 | ||
005 | 20240221 | ||
007 | cr|uuu---uuuuu | ||
008 | 220411s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783110351040 |9 978-3-11-035104-0 | ||
024 | 7 | |a 10.1515/9783110351040 |2 doi | |
035 | |a (ZDB-23-DGG)9783110351040 | ||
035 | |a (OCoLC)1312691908 | ||
035 | |a (DE-599)BVBBV047922146 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-706 |a DE-91 |a DE-83 |a DE-898 | ||
082 | 0 | |a 519.544 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rafajłowicz, Ewaryst |d 1953- |0 (DE-588)1262331668 |4 aut | |
245 | 1 | 0 | |a Optimal input signals for parameter estimation |b in linear systems with spatio-temporal dynamics |c Ewaryst Rafajłowicz |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (XI, 184 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented | ||
650 | 4 | |a Experimentendesign | |
650 | 4 | |a Lineares System | |
650 | 4 | |a Parameterabschätzung | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Green-Funktion |0 (DE-588)4158123-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eingangssignal |0 (DE-588)1079295801 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eingangssignal |0 (DE-588)1079295801 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 2 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |D s |
689 | 0 | 3 | |a Green-Funktion |0 (DE-588)4158123-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110350890 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110351040 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033303736 | ||
966 | e | |u https://doi.org/10.1515/9783110351040 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA22 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110351040 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183550968201216 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rafajłowicz, Ewaryst 1953- |
author_GND | (DE-588)1262331668 |
author_facet | Rafajłowicz, Ewaryst 1953- |
author_role | aut |
author_sort | Rafajłowicz, Ewaryst 1953- |
author_variant | e r er |
building | Verbundindex |
bvnumber | BV047922146 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110351040 (OCoLC)1312691908 (DE-599)BVBBV047922146 |
dewey-full | 519.544 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.544 |
dewey-search | 519.544 |
dewey-sort | 3519.544 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9783110351040 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04650nmm a2200625zc 4500</leader><controlfield tag="001">BV047922146</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220411s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110351040</subfield><subfield code="9">978-3-11-035104-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110351040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110351040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312691908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047922146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.544</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rafajłowicz, Ewaryst</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)1262331668</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal input signals for parameter estimation</subfield><subfield code="b">in linear systems with spatio-temporal dynamics</subfield><subfield code="c">Ewaryst Rafajłowicz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 184 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimentendesign</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineares System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameterabschätzung</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eingangssignal</subfield><subfield code="0">(DE-588)1079295801</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eingangssignal</subfield><subfield code="0">(DE-588)1079295801</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110350890</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033303736</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110351040</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047922146 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:33:45Z |
indexdate | 2024-07-10T09:25:14Z |
institution | BVB |
isbn | 9783110351040 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033303736 |
oclc_num | 1312691908 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-706 DE-91 DE-BY-TUM DE-83 DE-898 DE-BY-UBR |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-706 DE-91 DE-BY-TUM DE-83 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (XI, 184 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA22 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
spelling | Rafajłowicz, Ewaryst 1953- (DE-588)1262331668 aut Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics Ewaryst Rafajłowicz Berlin ; Boston De Gruyter [2022] © 2022 1 Online-Ressource (XI, 184 Seiten) txt rdacontent c rdamedia cr rdacarrier The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE's as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions having a tensor product (Kronecker) structure that is compatible with eigenfunctions of many partial differential operators. New optimality conditions in the time domain and computational algorithms are derived for D-optimal input signals when parameters of ordinary differential equations are estimated. They are used as building blocks for constructing D-optimal spatio-temporal inputs for systems described by linear partial differential equations of the parabolic and hyperbolic types with constant parameters. Optimality conditions for spatially distributed signals are also obtained for equations of elliptic type in those cases where their eigenfunctions do not depend on unknown constant parameters. These conditions and the resulting algorithms are interesting in their own right and, moreover, they are second building blocks for optimality of spatio-temporal signals. A discussion of the generalizability and possible applications of the results obtained is presented Experimentendesign Lineares System Parameterabschätzung Optimierung (DE-588)4043664-0 gnd rswk-swf Green-Funktion (DE-588)4158123-4 gnd rswk-swf Eingangssignal (DE-588)1079295801 gnd rswk-swf Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf Eingangssignal (DE-588)1079295801 s Optimierung (DE-588)4043664-0 s Lineare partielle Differentialgleichung (DE-588)4167708-0 s Green-Funktion (DE-588)4158123-4 s DE-604 Erscheint auch als Druck-Ausgabe 9783110350890 https://doi.org/10.1515/9783110351040 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rafajłowicz, Ewaryst 1953- Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics Experimentendesign Lineares System Parameterabschätzung Optimierung (DE-588)4043664-0 gnd Green-Funktion (DE-588)4158123-4 gnd Eingangssignal (DE-588)1079295801 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4158123-4 (DE-588)1079295801 (DE-588)4167708-0 |
title | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics |
title_auth | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics |
title_exact_search | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics |
title_exact_search_txtP | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics |
title_full | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics Ewaryst Rafajłowicz |
title_fullStr | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics Ewaryst Rafajłowicz |
title_full_unstemmed | Optimal input signals for parameter estimation in linear systems with spatio-temporal dynamics Ewaryst Rafajłowicz |
title_short | Optimal input signals for parameter estimation |
title_sort | optimal input signals for parameter estimation in linear systems with spatio temporal dynamics |
title_sub | in linear systems with spatio-temporal dynamics |
topic | Experimentendesign Lineares System Parameterabschätzung Optimierung (DE-588)4043664-0 gnd Green-Funktion (DE-588)4158123-4 gnd Eingangssignal (DE-588)1079295801 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
topic_facet | Experimentendesign Lineares System Parameterabschätzung Optimierung Green-Funktion Eingangssignal Lineare partielle Differentialgleichung |
url | https://doi.org/10.1515/9783110351040 |
work_keys_str_mv | AT rafajłowiczewaryst optimalinputsignalsforparameterestimationinlinearsystemswithspatiotemporaldynamics |