Minimum Divergence Methods in Statistical Machine Learning: From an Information Geometric Viewpoint
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Tokyo
Springer Japan
2022
Tokyo Springer |
Ausgabe: | 1st ed. 2022 |
Schlagworte: | |
Online-Zugang: | BTU01 FHD01 FHN01 FHR01 FKE01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (X, 221 p. 18 illus., 15 illus. in color) |
ISBN: | 9784431569220 |
DOI: | 10.1007/978-4-431-56922-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047917616 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220408s2022 |||| o||u| ||||||eng d | ||
020 | |a 9784431569220 |c Online |9 978-4-431-56922-0 | ||
024 | 7 | |a 10.1007/978-4-431-56922-0 |2 doi | |
035 | |a (ZDB-2-SMA)9784431569220 | ||
035 | |a (OCoLC)1310250427 | ||
035 | |a (DE-599)BVBBV047917616 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eguchi, Shinto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimum Divergence Methods in Statistical Machine Learning |b From an Information Geometric Viewpoint |c by Shinto Eguchi, Osamu Komori |
250 | |a 1st ed. 2022 | ||
264 | 1 | |a Tokyo |b Springer Japan |c 2022 | |
264 | 1 | |a Tokyo |b Springer | |
300 | |a 1 Online-Ressource (X, 221 p. 18 illus., 15 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Probability and Statistics in Computer Science | |
650 | 4 | |a Statistics | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Mathematical statistics | |
700 | 1 | |a Komori, Osamu |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-4-431-56920-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-4-431-56921-3 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-4-431-56922-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2022 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033299251 | ||
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FHD01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FKE01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UBY01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-4-431-56922-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 976004 |
---|---|
_version_ | 1806194984136736768 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Eguchi, Shinto Komori, Osamu |
author_facet | Eguchi, Shinto Komori, Osamu |
author_role | aut aut |
author_sort | Eguchi, Shinto |
author_variant | s e se o k ok |
building | Verbundindex |
bvnumber | BV047917616 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9784431569220 (OCoLC)1310250427 (DE-599)BVBBV047917616 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-4-431-56922-0 |
edition | 1st ed. 2022 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03338nmm a2200661zc 4500</leader><controlfield tag="001">BV047917616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220408s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784431569220</subfield><subfield code="c">Online</subfield><subfield code="9">978-4-431-56922-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-4-431-56922-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9784431569220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1310250427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047917616</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eguchi, Shinto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimum Divergence Methods in Statistical Machine Learning</subfield><subfield code="b">From an Information Geometric Viewpoint</subfield><subfield code="c">by Shinto Eguchi, Osamu Komori</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo</subfield><subfield code="b">Springer Japan</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 221 p. 18 illus., 15 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability and Statistics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Komori, Osamu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-4-431-56920-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-4-431-56921-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2022</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033299251</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-4-431-56922-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047917616 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:33:02Z |
indexdate | 2024-08-01T16:16:06Z |
institution | BVB |
isbn | 9784431569220 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033299251 |
oclc_num | 1310250427 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (X, 221 p. 18 illus., 15 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer Japan Springer |
record_format | marc |
spellingShingle | Eguchi, Shinto Komori, Osamu Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Probability and Statistics in Computer Science Statistics Computer science—Mathematics Mathematical statistics |
title | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint |
title_auth | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint |
title_exact_search | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint |
title_exact_search_txtP | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint |
title_full | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint by Shinto Eguchi, Osamu Komori |
title_fullStr | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint by Shinto Eguchi, Osamu Komori |
title_full_unstemmed | Minimum Divergence Methods in Statistical Machine Learning From an Information Geometric Viewpoint by Shinto Eguchi, Osamu Komori |
title_short | Minimum Divergence Methods in Statistical Machine Learning |
title_sort | minimum divergence methods in statistical machine learning from an information geometric viewpoint |
title_sub | From an Information Geometric Viewpoint |
topic | Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Probability and Statistics in Computer Science Statistics Computer science—Mathematics Mathematical statistics |
topic_facet | Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Probability and Statistics in Computer Science Statistics Computer science—Mathematics Mathematical statistics |
url | https://doi.org/10.1007/978-4-431-56922-0 |
work_keys_str_mv | AT eguchishinto minimumdivergencemethodsinstatisticalmachinelearningfromaninformationgeometricviewpoint AT komoriosamu minimumdivergencemethodsinstatisticalmachinelearningfromaninformationgeometricviewpoint |