Basics of statistical physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2022]
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 243 - 248 |
Beschreibung: | xvi, 254 Seiten Illustrationen, Diagramme |
ISBN: | 9789811256097 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047907582 | ||
003 | DE-604 | ||
005 | 20230206 | ||
007 | t | ||
008 | 220401s2022 xxua||| |||| 00||| eng d | ||
020 | |a 9789811256097 |c hardcover |9 978-981-125-609-7 | ||
035 | |a (OCoLC)1310254903 | ||
035 | |a (DE-599)KXP1797118838 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 |a DE-703 |a DE-20 | ||
050 | 0 | |a QC174.8 | |
082 | 0 | |a 530.13 |2 23 | |
084 | |a UG 3500 |0 (DE-625)145626: |2 rvk | ||
084 | |a UG 3100 |0 (DE-625)145625: |2 rvk | ||
084 | |a 33.25 |2 bkl | ||
100 | 1 | |a Müller-Kirsten, Harald J. W. |e Verfasser |0 (DE-588)139821864 |4 aut | |
245 | 1 | 0 | |a Basics of statistical physics |c Harald J. W. Müller-Kirsten |
250 | |a Third edition | ||
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2022] | |
300 | |a xvi, 254 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 243 - 248 | ||
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Statistical physics | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, for institutions |z 978-981-125-610-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, for individuals |z 978-981-125-611-0 |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033289416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033289416 |
Datensatz im Suchindex
_version_ | 1804183523286843392 |
---|---|
adam_text | Contents
Preface to Third Edition
Preface to Second Edition
Preface to First Edition
1 Introduction
1 1 Introductory Remarks 2 oc on
1 2 Thermodynamic Potentials 2 0 00 ee
13 Capacity ofHeat 2:2 ee ee ee
1 4 Frequently Used Terms 222 2 nenn
1 5 Applications and Examples 2222 onen
1 6 Problems without Worked Solutions
2 Statistical Mechanics of an Ideal Gas (Maxwell)
2 1 Introductory Remarks 0 00082 0s
2 2 Maxwell’s Treatment 2 oo mern
2 3 Lagrange’s Method of Multipliers 2 222220
24 Applications 222200 ee
241 Pressure exerted on the wallofavessel
242 Effusion of gas through ahole ,
243 Thermionicemission - 0008
2 5 Distribution Function for all Directions -
2 6 Applications and Examples 00 000048
2 7 Problems without Worked Solutions
3 The a priori Probability
3 1 Introductory Remarks 222m nn nenn
3 2 The a priori Probability 10200 00 ee eee
3 3 Examples Illustrating Liouville’s Theorem
3 4 Insertion of Physical Conditions
v
xi
xiii
vi
3 5 Applications and Examples 2: : onen
3 6 Problems without Worked Solutions 222 ccm 22
Classical Statistics (Maxwell-Boltzmann)
4 1 Introductory Remarks on on mo,
4 2 The Number of Arrangements of Elements in
Maxwell-Boltzmann Statisties 2 02 ccm
4 3 Method of Maximum Probability 2222m mon
431 The case of nonconserved elements ,
432 The case of conserved elements ,
433 The meaning of 0 00 ,
434 Identification of u with 1/kT 2 0 0000
435 Distribution of particles in the atmosphere ,
436 Law of equipartition of energy rn
4 4 Applicatios 2200 00 00 00
441 The monatomic gas , ,
A An
4 5 Applications and Examples 222 2 on
4 6 Problems without Worked Solutions , ,
Entropy
5 1 Introductory Remarks 222022
5 2 The Boltzmann Formula 222022
5 3 Applications and Examples 2 0
5 4 Problems without Worked Solutions 2 2 oo oo
Quantum Statistics
6 1 Introductory Remarks 2 2 2220
62A priori Weighting in Quantum Statistics 2
621 Approximate calculation of number of states
622 Accurate calculation of number of states
623 Examples 200
6 3 The Allowed Number of Elements in Quantum States
6 31 Ome element nn
632 Two non-interacting elements 2 een
633 More than two elements Stuck together
6 4 Counting of Number of Arrangements
641 Fermi-Dirac statistics
642 Bose-Einstein statistics 2222000
6 5 Quantum Statistics at High Temperatures
6 6 Applications
Contents
6 7 Summary
Applications and Examples 0 00005000
Problems without Worked Solutions
7 Exact Form of Distribution Functions
Introductory Remarks 2222n nennen
Fermi-Dirac Occupation Numbers 2222 20
Bose-Einstein Occupation Numbers -
Thermodynamical Functions - - 20-
Applications and Examples 2 2 nommen
Problems without Worked Solutions
8 Application to Radiation (Light Quanta)
Introductory Remarks 0 00 ee eee
Planck’s Radiation Law 2 2 eee ee ee
Black Body Thermal Radiation 0 0 0005
Applications and Examples 2 Common
Problems without Worked Solutions
9 Debye Theory of Specific Heat of Solids
Introductory Remarks - -2 2+ 000 ee
The Calculation 2 0 ee ee ee ee
Applications and Examples 000084
Problems without Worked Solutions 4
10 Electrons in Metals
10 1 Introductory Remarks 000 000
10 2 Evaluation of the Distribution Function
10 2 1 First approximation 20222 ce eee
10 2 2 Second degree of approximation
10 3 Applications and Examples 0050004
10 4 Problems without Worked Solutions
11 Limitations of the Preceding Theory — Improvement
with Ensemble Method
11 1 Introductory Remarks
11 2 Ensembles — Three Types
11 2 1 Ensembles and ergodic hypothesis
11 2 2 The ensemble distribution function
11 3 The Canonical Ensemble of a Closed System
11 3 1 Thermodynamics of a closed system in a heat bath
vii
viii Contents
11 4 The Grand Canonical Ensemble 165
11 5 Ensemble Method of Maximum Probability , 166
11 6 Comments on the Function P222mm mn 167
11 7 Applications and Examples 169
11 8 Problems without Worked Solutions 174
12 Averaging instead of Maximization, and Bose-Einstein
Condensation 177
12 1 Introductory Remarks 00 00000 177
12 2 The Darwin-Fowler Method of Mean Values 178
12 2 1 Mean occupation number Tee ee eee ee ee 179
12 2 2 Taking subsidiary condition into account 180
12 3 Classical Statistics 200 ee ee ee 181
12 4 Quantum Statisties oo om oo 183
12 4 1 Fermi—Dirac statistics 2 oo oo nn 183
12 4 2 Bose-Einstein statistics 0 184
12 4 3 Evaluation of the coefficient of wN inZ, 184
12 5 Bose-Einstein Condensation 22222 mn 190
12 5 1 The phenomenon of Bose-Einstein condensation 190
12 5 2 Derivation of the Bose-Einstein distribution function
under condensation conditions 191
12 6 Applications and Examples 00 201
12 7 Problems without Worked Solutions 212
13 The Boltzmann Transport Equation 215
13 1 Introductory Remarks 0 0 000000 eee 215
13 2 Distribution Functions 2 22: on om mn 215
13 3 Solution of the Boltzmann Equation 217
13 3 1 Solving the Boltzmann equation for two typical cases 218
13 3 2 Calculation of the current density 219
13 3 3 Application to metals 2 22 none 220
13 3 4 Calculation of the relaxation time 222
13 4 Applications and Examples 2 2 Co onen 228
13 5 Problems without Worked Solutions 228
14 Thermal Radiation of Black Holes 231
14 1 Preliminary Remarks 200-- 231
14 2 Background Geometry 0020 04 2 e eee 231
14 3 Rindler Coordinates 222 vo ee ee ee ee 232
14 4 Introduction of Fields ::: 2:22 onen 234
14 5 Thermalization 2:2: 2m mern 236
Contents
14 6 Black Hole Evaporation
14 7 Applications and Examples
14 8 Problems without Worked Solutions
Bibliography
Index
|
adam_txt |
Contents
Preface to Third Edition
Preface to Second Edition
Preface to First Edition
1 Introduction
1 1 Introductory Remarks 2 oc on
1 2 Thermodynamic Potentials 2 0 00 ee
13 Capacity ofHeat 2:2 ee ee ee
1 4 Frequently Used Terms 222 2 nenn
1 5 Applications and Examples 2222 onen
1 6 Problems without Worked Solutions
2 Statistical Mechanics of an Ideal Gas (Maxwell)
2 1 Introductory Remarks 0 00082 0s
2 2 Maxwell’s Treatment 2 oo mern
2 3 Lagrange’s Method of Multipliers 2 222220
24 Applications 222200 ee
241 Pressure exerted on the wallofavessel
242 Effusion of gas through ahole ,
243 Thermionicemission - 0008
2 5 Distribution Function for all Directions -
2 6 Applications and Examples 00 000048
2 7 Problems without Worked Solutions
3 The a priori Probability
3 1 Introductory Remarks 222m nn nenn
3 2 The a priori Probability 10200 00 ee eee
3 3 Examples Illustrating Liouville’s Theorem
3 4 Insertion of Physical Conditions
v
xi
xiii
vi
3 5 Applications and Examples 2: : onen
3 6 Problems without Worked Solutions 222 ccm 22
Classical Statistics (Maxwell-Boltzmann)
4 1 Introductory Remarks on on mo,
4 2 The Number of Arrangements of Elements in
Maxwell-Boltzmann Statisties 2 02 ccm
4 3 Method of Maximum Probability 2222m mon
431 The case of nonconserved elements ,
432 The case of conserved elements ,
433 The meaning of 0 00 ,
434 Identification of u with 1/kT 2 0 0000
435 Distribution of particles in the atmosphere ,
436 Law of equipartition of energy rn
4 4 Applicatios 2200 00 00 00
441 The monatomic gas , ,
A An
4 5 Applications and Examples 222 2 on
4 6 Problems without Worked Solutions , ,
Entropy
5 1 Introductory Remarks 222022
5 2 The Boltzmann Formula 222022
5 3 Applications and Examples 2 0
5 4 Problems without Worked Solutions 2 2 oo oo
Quantum Statistics
6 1 Introductory Remarks 2 2 2220
62A priori Weighting in Quantum Statistics 2
621 Approximate calculation of number of states
622 Accurate calculation of number of states
623 Examples 200
6 3 The Allowed Number of Elements in Quantum States
6 31 Ome element nn
632 Two non-interacting elements 2 een
633 More than two elements Stuck together
6 4 Counting of Number of Arrangements
641 Fermi-Dirac statistics
642 Bose-Einstein statistics 2222000
6 5 Quantum Statistics at High Temperatures
6 6 Applications
Contents
6 7 Summary
Applications and Examples 0 00005000
Problems without Worked Solutions
7 Exact Form of Distribution Functions
Introductory Remarks 2222n nennen
Fermi-Dirac Occupation Numbers 2222 20
Bose-Einstein Occupation Numbers -
Thermodynamical Functions - - 20-
Applications and Examples 2 2 nommen
Problems without Worked Solutions
8 Application to Radiation (Light Quanta)
Introductory Remarks 0 00 ee eee
Planck’s Radiation Law 2 2 eee ee ee
Black Body Thermal Radiation 0 0 0005
Applications and Examples 2 Common
Problems without Worked Solutions
9 Debye Theory of Specific Heat of Solids
Introductory Remarks - -2 2+ 000 ee
The Calculation 2 0 ee ee ee ee
Applications and Examples 000084
Problems without Worked Solutions 4
10 Electrons in Metals
10 1 Introductory Remarks 000 000
10 2 Evaluation of the Distribution Function
10 2 1 First approximation 20222 ce eee
10 2 2 Second degree of approximation
10 3 Applications and Examples 0050004
10 4 Problems without Worked Solutions
11 Limitations of the Preceding Theory — Improvement
with Ensemble Method
11 1 Introductory Remarks
11 2 Ensembles — Three Types
11 2 1 Ensembles and ergodic hypothesis
11 2 2 The ensemble distribution function
11 3 The Canonical Ensemble of a Closed System
11 3 1 Thermodynamics of a closed system in a heat bath
vii
viii Contents
11 4 The Grand Canonical Ensemble 165
11 5 Ensemble Method of Maximum Probability , 166
11 6 Comments on the Function P222mm mn 167
11 7 Applications and Examples 169
11 8 Problems without Worked Solutions 174
12 Averaging instead of Maximization, and Bose-Einstein
Condensation 177
12 1 Introductory Remarks 00 00000 177
12 2 The Darwin-Fowler Method of Mean Values 178
12 2 1 Mean occupation number Tee ee eee ee ee 179
12 2 2 Taking subsidiary condition into account 180
12 3 Classical Statistics 200 ee ee ee 181
12 4 Quantum Statisties oo om oo 183
12 4 1 Fermi—Dirac statistics 2 oo oo nn 183
12 4 2 Bose-Einstein statistics 0 184
12 4 3 Evaluation of the coefficient of wN inZ, 184
12 5 Bose-Einstein Condensation 22222 mn 190
12 5 1 The phenomenon of Bose-Einstein condensation 190
12 5 2 Derivation of the Bose-Einstein distribution function
under condensation conditions 191
12 6 Applications and Examples 00 201
12 7 Problems without Worked Solutions 212
13 The Boltzmann Transport Equation 215
13 1 Introductory Remarks 0 0 000000 eee 215
13 2 Distribution Functions 2 22: on om mn 215
13 3 Solution of the Boltzmann Equation 217
13 3 1 Solving the Boltzmann equation for two typical cases 218
13 3 2 Calculation of the current density 219
13 3 3 Application to metals 2 22 none 220
13 3 4 Calculation of the relaxation time 222
13 4 Applications and Examples 2 2 Co onen 228
13 5 Problems without Worked Solutions 228
14 Thermal Radiation of Black Holes 231
14 1 Preliminary Remarks 200-- 231
14 2 Background Geometry 0020 04 2 e eee 231
14 3 Rindler Coordinates 222 vo ee ee ee ee 232
14 4 Introduction of Fields ::: 2:22 onen 234
14 5 Thermalization 2:2: 2m mern 236
Contents
14 6 Black Hole Evaporation
14 7 Applications and Examples
14 8 Problems without Worked Solutions
Bibliography
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Müller-Kirsten, Harald J. W. |
author_GND | (DE-588)139821864 |
author_facet | Müller-Kirsten, Harald J. W. |
author_role | aut |
author_sort | Müller-Kirsten, Harald J. W. |
author_variant | h j w m k hjwm hjwmk |
building | Verbundindex |
bvnumber | BV047907582 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.8 |
callnumber-search | QC174.8 |
callnumber-sort | QC 3174.8 |
callnumber-subject | QC - Physics |
classification_rvk | UG 3500 UG 3100 |
ctrlnum | (OCoLC)1310254903 (DE-599)KXP1797118838 |
dewey-full | 530.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13 |
dewey-search | 530.13 |
dewey-sort | 3530.13 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01818nam a2200445 c 4500</leader><controlfield tag="001">BV047907582</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220401s2022 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811256097</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-125-609-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1310254903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1797118838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.13</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller-Kirsten, Harald J. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139821864</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basics of statistical physics</subfield><subfield code="c">Harald J. W. Müller-Kirsten</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 254 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 243 - 248</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, for institutions</subfield><subfield code="z">978-981-125-610-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, for individuals</subfield><subfield code="z">978-981-125-611-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033289416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033289416</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV047907582 |
illustrated | Illustrated |
index_date | 2024-07-03T19:30:21Z |
indexdate | 2024-07-10T09:24:48Z |
institution | BVB |
isbn | 9789811256097 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033289416 |
oclc_num | 1310254903 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-20 |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-20 |
physical | xvi, 254 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | World Scientific |
record_format | marc |
spelling | Müller-Kirsten, Harald J. W. Verfasser (DE-588)139821864 aut Basics of statistical physics Harald J. W. Müller-Kirsten Third edition New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2022] xvi, 254 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 243 - 248 Statistische Physik (DE-588)4057000-9 gnd rswk-swf Statistical physics (DE-588)4123623-3 Lehrbuch gnd-content Statistische Physik (DE-588)4057000-9 s DE-604 Erscheint auch als Online-Ausgabe, for institutions 978-981-125-610-3 Erscheint auch als Online-Ausgabe, for individuals 978-981-125-611-0 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033289416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Müller-Kirsten, Harald J. W. Basics of statistical physics Statistische Physik (DE-588)4057000-9 gnd |
subject_GND | (DE-588)4057000-9 (DE-588)4123623-3 |
title | Basics of statistical physics |
title_auth | Basics of statistical physics |
title_exact_search | Basics of statistical physics |
title_exact_search_txtP | Basics of statistical physics |
title_full | Basics of statistical physics Harald J. W. Müller-Kirsten |
title_fullStr | Basics of statistical physics Harald J. W. Müller-Kirsten |
title_full_unstemmed | Basics of statistical physics Harald J. W. Müller-Kirsten |
title_short | Basics of statistical physics |
title_sort | basics of statistical physics |
topic | Statistische Physik (DE-588)4057000-9 gnd |
topic_facet | Statistische Physik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033289416&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mullerkirstenharaldjw basicsofstatisticalphysics |