Intense automorphisms of finite groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence
American Mathematical Society
[2021]
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 273, number 1341 (fourth of 5 numbers) |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | viii,115 Seiten |
ISBN: | 9781470450038 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047892311 | ||
003 | DE-604 | ||
005 | 20220426 | ||
007 | t | ||
008 | 220322s2021 |||| 00||| eng d | ||
020 | |a 9781470450038 |9 978-1-4704-5003-8 | ||
035 | |a (OCoLC)1310260009 | ||
035 | |a (DE-599)BVBBV047892311 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-29T |a DE-355 |a DE-11 | ||
100 | 1 | |a Stanojkovski, Mima |0 (DE-588)1253908699 |4 aut | |
245 | 1 | 0 | |a Intense automorphisms of finite groups |c Mima Stanojkovski |
264 | 1 | |a Providence |b American Mathematical Society |c [2021] | |
300 | |a viii,115 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v volume 273, number 1341 (fourth of 5 numbers) | |
830 | 0 | |a Memoirs of the American Mathematical Society |v volume 273, number 1341 (fourth of 5 numbers) |w (DE-604)BV008000141 |9 1341 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033274388&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033274388 |
Datensatz im Suchindex
_version_ | 1804183498432446464 |
---|---|
adam_text | ics 125:
133!
138)
139°
147°
Computing 153
ERS WITH QUANTUM
S 154
M COMPUTING 157!
Contents I xi
CHAPTER 17 GAALOPWeb as a Qubit Calculator 163
17 1 QUBIT ALGEBRA QBA 163
17 2 GAALOPWEB FOR QUBITS 164
17 3 THE NOT-OPERATION ON A QUBIT 165
17 4 THE 2-QUBIT ALGEBRA QBA2 165
CHAPTER 18 = Appendix 169
18 1 APPENDIX A: PYTHON CODE FOR THE GENERATION OF
OPTIMIZED MATHEMATICA CODE FROM GAALOP 169
Bibliography 173
Index 177
cessible
ts of six
ws: for
55 list,
are also
within
to late
may be
y, P O
Other
A,
ibraries
ges for
tion in
ication
ission
er For
org
1 cases,
hor(s)
of the
line))
erican
ostage
atical
tion
ences
Contents
List of Symbols
Chapter 1 Introduction
Chapter 2 Coprime Actions
2 1 Actions through characters
2 2 Involutions
2 3 Jumps and width
Chapter 3 Intense Automorphisms
3 1 Basic properties
3 2 The main question
3 3 The abelian case
Chapter 4 Intensity of Groups of Class 2
4 1 Small commutator subgroup
4 2 More general setting
4 3 The extraspecial case
Chapter 5 Intensity of Groups of Class 3
9 1 Low intensity
5 2 Intensity given the automorphism
5 3 Constructing intense automorphisms
Chapter 6 Some Structural Restrictions
6 1 Normal subgroups
6 2 About the third width
63A bound on the width
Chapter 7 Higher Nilpotency Classes
7 1 Class 4 and intensity
7 2 Class 5 and intensity
Chapter 8 A Disparity between the Primes
8 1 Regularity
82 Rank
83A sharper bound on the width
Chapter 9 The Special Case of 3-groups
9 1 The cubing map
92A specific example
9 3 Structures on vector spaces
iii
vii
CONTENTS
9 4 Structures and free groups
9 5 Extensions
9 6 Constructing automorphisms
9 7 Intensity
Chapter 10 Obelisks
10 1 Some properties
10 2 Power maps and commutators
10 3 Framed obelisks
10 4 Subgroups of obelisks
Chapter 11 The Most Intense Chapter
11 1 The even case
11 2 The odd case, part I
11 3 The odd case, part II
11 4 Proving the main theorems
Chapter 12 High Class Intensity
12 1 A special case
12 2 The last exotic case
12 3 Proving the main theorem
Chapter 13 Intense Automorphisms of Profinite Groups
13 1 Some background
13 2 Properties and intensity
13 3 Non-abelian groups, part I
13 4 Two infinite groups
13 5 Non-abelian groups, part: II
13 6 Proving the main theorems and more
Bibliography
Index
an
for
He
thi
|
adam_txt |
ics 125:
133!
138)
139°
147°
Computing 153
ERS WITH QUANTUM
S 154
M COMPUTING 157!
Contents I xi
CHAPTER 17 GAALOPWeb as a Qubit Calculator 163
17 1 QUBIT ALGEBRA QBA 163
17 2 GAALOPWEB FOR QUBITS 164
17 3 THE NOT-OPERATION ON A QUBIT 165
17 4 THE 2-QUBIT ALGEBRA QBA2 165
CHAPTER 18 = Appendix 169
18 1 APPENDIX A: PYTHON CODE FOR THE GENERATION OF
OPTIMIZED MATHEMATICA CODE FROM GAALOP 169
Bibliography 173
Index 177
cessible
ts of six
ws: for
55 list,
are also
within
to late
may be
y, P O
Other
A,
ibraries
ges for
tion in
ication
ission
er For
org
1 cases,
hor(s)
of the
line))
erican
ostage
atical
tion
ences
Contents
List of Symbols
Chapter 1 Introduction
Chapter 2 Coprime Actions
2 1 Actions through characters
2 2 Involutions
2 3 Jumps and width
Chapter 3 Intense Automorphisms
3 1 Basic properties
3 2 The main question
3 3 The abelian case
Chapter 4 Intensity of Groups of Class 2
4 1 Small commutator subgroup
4 2 More general setting
4 3 The extraspecial case
Chapter 5 Intensity of Groups of Class 3
9 1 Low intensity
5 2 Intensity given the automorphism
5 3 Constructing intense automorphisms
Chapter 6 Some Structural Restrictions
6 1 Normal subgroups
6 2 About the third width
63A bound on the width
Chapter 7 Higher Nilpotency Classes
7 1 Class 4 and intensity
7 2 Class 5 and intensity
Chapter 8 A Disparity between the Primes
8 1 Regularity
82 Rank
83A sharper bound on the width
Chapter 9 The Special Case of 3-groups
9 1 The cubing map
92A specific example
9 3 Structures on vector spaces
iii
vii
CONTENTS
9 4 Structures and free groups
9 5 Extensions
9 6 Constructing automorphisms
9 7 Intensity
Chapter 10 Obelisks
10 1 Some properties
10 2 Power maps and commutators
10 3 Framed obelisks
10 4 Subgroups of obelisks
Chapter 11 The Most Intense Chapter
11 1 The even case
11 2 The odd case, part I
11 3 The odd case, part II
11 4 Proving the main theorems
Chapter 12 High Class Intensity
12 1 A special case
12 2 The last exotic case
12 3 Proving the main theorem
Chapter 13 Intense Automorphisms of Profinite Groups
13 1 Some background
13 2 Properties and intensity
13 3 Non-abelian groups, part I
13 4 Two infinite groups
13 5 Non-abelian groups, part: II
13 6 Proving the main theorems and more
Bibliography
Index
an
for
He
thi |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Stanojkovski, Mima |
author_GND | (DE-588)1253908699 |
author_facet | Stanojkovski, Mima |
author_role | aut |
author_sort | Stanojkovski, Mima |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV047892311 |
ctrlnum | (OCoLC)1310260009 (DE-599)BVBBV047892311 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01251nam a2200289 cb4500</leader><controlfield tag="001">BV047892311</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220426 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220322s2021 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470450038</subfield><subfield code="9">978-1-4704-5003-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1310260009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047892311</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stanojkovski, Mima</subfield><subfield code="0">(DE-588)1253908699</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intense automorphisms of finite groups</subfield><subfield code="c">Mima Stanojkovski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii,115 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 273, number 1341 (fourth of 5 numbers)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 273, number 1341 (fourth of 5 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1341</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033274388&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033274388</subfield></datafield></record></collection> |
id | DE-604.BV047892311 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:26:34Z |
indexdate | 2024-07-10T09:24:24Z |
institution | BVB |
isbn | 9781470450038 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033274388 |
oclc_num | 1310260009 |
open_access_boolean | |
owner | DE-83 DE-29T DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-83 DE-29T DE-355 DE-BY-UBR DE-11 |
physical | viii,115 Seiten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Stanojkovski, Mima (DE-588)1253908699 aut Intense automorphisms of finite groups Mima Stanojkovski Providence American Mathematical Society [2021] viii,115 Seiten txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society volume 273, number 1341 (fourth of 5 numbers) Memoirs of the American Mathematical Society volume 273, number 1341 (fourth of 5 numbers) (DE-604)BV008000141 1341 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033274388&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Stanojkovski, Mima Intense automorphisms of finite groups Memoirs of the American Mathematical Society |
title | Intense automorphisms of finite groups |
title_auth | Intense automorphisms of finite groups |
title_exact_search | Intense automorphisms of finite groups |
title_exact_search_txtP | Intense automorphisms of finite groups |
title_full | Intense automorphisms of finite groups Mima Stanojkovski |
title_fullStr | Intense automorphisms of finite groups Mima Stanojkovski |
title_full_unstemmed | Intense automorphisms of finite groups Mima Stanojkovski |
title_short | Intense automorphisms of finite groups |
title_sort | intense automorphisms of finite groups |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033274388&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT stanojkovskimima intenseautomorphismsoffinitegroups |