Accelerated materials discovery: how to use artificial intelligence to speed up development
Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looki...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Schriftenreihe: | De Gruyter STEM
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UBT01 UPA01 Volltext |
Zusammenfassung: | Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world's biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs) |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 02. Mrz 2022) |
Beschreibung: | 1 Online-Ressource (X, 205 Seiten) |
ISBN: | 9783110738087 |
DOI: | 10.1515/9783110738087 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047870413 | ||
003 | DE-604 | ||
005 | 20221028 | ||
007 | cr|uuu---uuuuu | ||
008 | 220308s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783110738087 |9 978-3-11-073808-7 | ||
024 | 7 | |a 10.1515/9783110738087 |2 doi | |
035 | |a (ZDB-23-DGG)9783110738087 | ||
035 | |a (OCoLC)1304487604 | ||
035 | |a (DE-599)BVBBV047870413 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-703 | ||
084 | |a ZM 3000 |0 (DE-625)157020: |2 rvk | ||
245 | 1 | 0 | |a Accelerated materials discovery |b how to use artificial intelligence to speed up development |c edited by Phil De Luna |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (X, 205 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter STEM | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 02. Mrz 2022) | ||
520 | |a Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world's biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs) | ||
546 | |a In English | ||
650 | 4 | |a Materialwirtschaft | |
650 | 4 | |a Materialwissenschaft | |
650 | 4 | |a künstliche Intelligenz | |
650 | 4 | |a maschinelles Lernen | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoffkunde |0 (DE-588)4079184-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Werkstoffkunde |0 (DE-588)4079184-1 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a De Luna, Phil |0 (DE-588)1259366618 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-073804-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-073325-9 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110738087 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033252906 | ||
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110738087 |l UBT01 |p ZDB-23-DGG |q UBT_P&C_2022_10_DeGruyter |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9783110738087 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183453614211072 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | De Luna, Phil |
author2_role | edt |
author2_variant | l p d lp lpd |
author_GND | (DE-588)1259366618 |
author_facet | De Luna, Phil |
building | Verbundindex |
bvnumber | BV047870413 |
classification_rvk | ZM 3000 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783110738087 (OCoLC)1304487604 (DE-599)BVBBV047870413 |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
doi_str_mv | 10.1515/9783110738087 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03790nmm a2200613zc 4500</leader><controlfield tag="001">BV047870413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221028 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220308s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110738087</subfield><subfield code="9">978-3-11-073808-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110738087</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110738087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1304487604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047870413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3000</subfield><subfield code="0">(DE-625)157020:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accelerated materials discovery</subfield><subfield code="b">how to use artificial intelligence to speed up development</subfield><subfield code="c">edited by Phil De Luna</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 205 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 02. Mrz 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world's biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs)</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materialwirtschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materialwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maschinelles Lernen</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Luna, Phil</subfield><subfield code="0">(DE-588)1259366618</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-073804-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-073325-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110738087</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033252906</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110738087</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBT_P&C_2022_10_DeGruyter</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9783110738087</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047870413 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:20:00Z |
indexdate | 2024-07-10T09:23:41Z |
institution | BVB |
isbn | 9783110738087 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033252906 |
oclc_num | 1304487604 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-703 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-703 |
physical | 1 Online-Ressource (X, 205 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UBT_P&C_2022_10_DeGruyter ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter STEM |
spelling | Accelerated materials discovery how to use artificial intelligence to speed up development edited by Phil De Luna Berlin ; Boston De Gruyter [2022] © 2022 1 Online-Ressource (X, 205 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter STEM Description based on online resource; title from PDF title page (publisher's Web site, viewed 02. Mrz 2022) Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world's biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs) In English Materialwirtschaft Materialwissenschaft künstliche Intelligenz maschinelles Lernen Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Werkstoffkunde (DE-588)4079184-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Werkstoffkunde (DE-588)4079184-1 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 De Luna, Phil (DE-588)1259366618 edt Erscheint auch als Druck-Ausgabe 978-3-11-073804-9 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-073325-9 https://doi.org/10.1515/9783110738087 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Accelerated materials discovery how to use artificial intelligence to speed up development Materialwirtschaft Materialwissenschaft künstliche Intelligenz maschinelles Lernen Künstliche Intelligenz (DE-588)4033447-8 gnd Werkstoffkunde (DE-588)4079184-1 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4079184-1 (DE-588)4143413-4 |
title | Accelerated materials discovery how to use artificial intelligence to speed up development |
title_auth | Accelerated materials discovery how to use artificial intelligence to speed up development |
title_exact_search | Accelerated materials discovery how to use artificial intelligence to speed up development |
title_exact_search_txtP | Accelerated materials discovery how to use artificial intelligence to speed up development |
title_full | Accelerated materials discovery how to use artificial intelligence to speed up development edited by Phil De Luna |
title_fullStr | Accelerated materials discovery how to use artificial intelligence to speed up development edited by Phil De Luna |
title_full_unstemmed | Accelerated materials discovery how to use artificial intelligence to speed up development edited by Phil De Luna |
title_short | Accelerated materials discovery |
title_sort | accelerated materials discovery how to use artificial intelligence to speed up development |
title_sub | how to use artificial intelligence to speed up development |
topic | Materialwirtschaft Materialwissenschaft künstliche Intelligenz maschinelles Lernen Künstliche Intelligenz (DE-588)4033447-8 gnd Werkstoffkunde (DE-588)4079184-1 gnd |
topic_facet | Materialwirtschaft Materialwissenschaft künstliche Intelligenz maschinelles Lernen Künstliche Intelligenz Werkstoffkunde Aufsatzsammlung |
url | https://doi.org/10.1515/9783110738087 |
work_keys_str_mv | AT delunaphil acceleratedmaterialsdiscoveryhowtouseartificialintelligencetospeedupdevelopment |