Minding the weather: how expert forecasters think
The History of Expertise Studies -- Methods for Peering Into the Black Box -- Expert Knowledge -- Expert Reasoning -- Learning and Cognitive Flexibility -- Learning -- Cognitive Flexibility and Cognitive Transformation -- Expert Perceptual Skill -- Integrated Models of Expert "Macrocognition&qu...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts ; London, England
The MIT Press
[2017]
|
Schlagworte: | |
Online-Zugang: | DE-1050 |
Zusammenfassung: | The History of Expertise Studies -- Methods for Peering Into the Black Box -- Expert Knowledge -- Expert Reasoning -- Learning and Cognitive Flexibility -- Learning -- Cognitive Flexibility and Cognitive Transformation -- Expert Perceptual Skill -- Integrated Models of Expert "Macrocognition"--Conclusions -- 7 How Do Forecasters Get to Be Expert Forecasters? -- Expertise versus Intelligence -- Forecasting Competitions -- Recognition of the Need for Training to High Proficiency -- A General Proficiency Scale -- The Proficiency Scaling Process -- U.S. Navy Weather Forecasting Case Study -- U.S. Air Force Weather Forecasting Case Study -- Integration of the Findings -- The Forecasting Process -- The "Quick Size-Up"--Use of Computer Models -- Sensemaking -- Conclusion -- 8 What Does Research on Forecaster Knowledge Tell Us? -- Preparation -- Critical Decision Method -- Concept Mapping -- It Is Not All Just in the Head -- Conclusion -- 9 What Does Research on Forecaster Perception Tell Us? -- How and Why Diagrams and Visualizations Aid Sensemaking -- Display Design Principles: Some Work, Some Don't -- Interpretation of Weather Maps by Forecasters and Non-Forecasters -- Forecasters' Understanding of Weather Charts: Filling in the Gaps -- From Cues to Patterns to Dynamics -- Perceptual Operations during the Forecasting Process -- Conclusions -- 10 What Does Research on Forecaster Reasoning Tell Us? -- Mental Models -- Modeling Forecaster Reasoning -- Modeling Forecaster Macrocognition -- Generic versus Specific Models -- Flexecution in Forecasting -- Conclusions -- 11 Can a Machine Imitate the Human? -- Can Computers Be Made to Think Like Forecasters? -- The Structure of Forecasting KBSs -- So How Well Did the Expert Systems Perform? -- Peering into the Black Box -- Metamorphosis from Expert Systems to Intelligent Systems |
Beschreibung: | 1 Online-Ressource (xiv, 470 Seiten) |
ISBN: | 9780262339407 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047865079 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220304s2017 |||| o||u| ||||||eng d | ||
020 | |a 9780262339407 |9 978-0-262-33940-7 | ||
035 | |a (OCoLC)1302316558 | ||
035 | |a (DE-599)BVBBV047865079 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Hoffman, Robert R. |d 1950- |e Verfasser |0 (DE-588)1069781231 |4 aut | |
245 | 1 | 0 | |a Minding the weather |b how expert forecasters think |c Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton |
264 | 1 | |a Cambridge, Massachusetts ; London, England |b The MIT Press |c [2017] | |
300 | |a 1 Online-Ressource (xiv, 470 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a About the Authors -- Preface -- Acknowledgments -- Personal Acknowledgment -- 1 Introduction -- Motivation for the Study of Forecaster Reasoning -- The Data Overload Problem -- GOES Satellite Products -- NEXRAD Radar Products -- So, How Much Data Are There? -- Coping with Data Overload -- Some Key Terms -- Sources of Information Concerning Forecaster Cognition -- 2 What Is the Forecasting Workspace Like? -- Evolution of the Modern Workstation-based Workplace -- The Rise of the Workstation: AFOS, McIDAS, and PROFS -- How Many Displays? -- Visualization Design -- PRAVDA and Met.3D -- Met.3D -- Conclusions -- A Day in the Life: A Cautionary Tale about Work System Design -- 3 How Do People Come to Be Forecasters? -- Historical Background -- Forecasting Training within Meteorological Education -- College-Level Education -- The Interdependence of Meteorology Education and Forecaster Training -- Forecaster Training -- An Ethnographic Study of How People Get to Be Forecasters -- New Learning Venues -- COMET -- INNOVATIVE WEATHER -- Some Not-so-Formal Learning Venues -- Conclusions -- 4 How Do Forecasters Describe How They Reason? -- Teamwork -- Knowledge -- Perception and Recognition -- Conceptual Models -- General Forecasting Principles -- Reasoning Process -- Forecasters' Descriptions of Forecaster Reasoning -- Conclusions -- 5 How Well Do Forecasters (and Forecasts) Perform? -- Challenges in Measuring the Goodness of Forecasts -- "Goodness" and the Context of Use -- The Challenges of Measurement -- Forecast Verification Research -- How Good Are Those Probability Forecasts? -- Predictability versus Understandability -- Linear Models: Can the Human Forecaster Outperform a Simple Linear Model? -- Forecast Quality Is More Than Just "Hit Rate" -- A Cautionary Tale -- Conclusions -- 6 What Characterizes Expertise? | |
520 | |a The History of Expertise Studies -- Methods for Peering Into the Black Box -- Expert Knowledge -- Expert Reasoning -- Learning and Cognitive Flexibility -- Learning -- Cognitive Flexibility and Cognitive Transformation -- Expert Perceptual Skill -- Integrated Models of Expert "Macrocognition"--Conclusions -- 7 How Do Forecasters Get to Be Expert Forecasters? -- Expertise versus Intelligence -- Forecasting Competitions -- Recognition of the Need for Training to High Proficiency -- A General Proficiency Scale -- The Proficiency Scaling Process -- U.S. Navy Weather Forecasting Case Study -- U.S. Air Force Weather Forecasting Case Study -- Integration of the Findings -- The Forecasting Process -- The "Quick Size-Up"--Use of Computer Models -- Sensemaking -- Conclusion -- 8 What Does Research on Forecaster Knowledge Tell Us? -- Preparation -- Critical Decision Method -- Concept Mapping -- It Is Not All Just in the Head -- Conclusion -- 9 What Does Research on Forecaster Perception Tell Us? -- How and Why Diagrams and Visualizations Aid Sensemaking -- Display Design Principles: Some Work, Some Don't -- Interpretation of Weather Maps by Forecasters and Non-Forecasters -- Forecasters' Understanding of Weather Charts: Filling in the Gaps -- From Cues to Patterns to Dynamics -- Perceptual Operations during the Forecasting Process -- Conclusions -- 10 What Does Research on Forecaster Reasoning Tell Us? -- Mental Models -- Modeling Forecaster Reasoning -- Modeling Forecaster Macrocognition -- Generic versus Specific Models -- Flexecution in Forecasting -- Conclusions -- 11 Can a Machine Imitate the Human? -- Can Computers Be Made to Think Like Forecasters? -- The Structure of Forecasting KBSs -- So How Well Did the Expert Systems Perform? -- Peering into the Black Box -- Metamorphosis from Expert Systems to Intelligent Systems | ||
650 | 0 | 7 | |a Meteorologie |0 (DE-588)4038953-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wettervorhersage |0 (DE-588)4079256-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wettervorhersage |0 (DE-588)4079256-0 |D s |
689 | 0 | 1 | |a Meteorologie |0 (DE-588)4038953-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a LaDue, Daphne S. |e Verfasser |4 aut | |
700 | 1 | |a Mogil, H. Michael |e Verfasser |0 (DE-588)140356851 |4 aut | |
700 | 1 | |a Roebber, Paul J. |e Verfasser |4 aut | |
700 | 1 | |a Trafton, J. Gregory |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-262-03606-1 |
912 | |a ZDB-30-PQE | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4983518 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1805069573501747200 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hoffman, Robert R. 1950- LaDue, Daphne S. Mogil, H. Michael Roebber, Paul J. Trafton, J. Gregory |
author_GND | (DE-588)1069781231 (DE-588)140356851 |
author_facet | Hoffman, Robert R. 1950- LaDue, Daphne S. Mogil, H. Michael Roebber, Paul J. Trafton, J. Gregory |
author_role | aut aut aut aut aut |
author_sort | Hoffman, Robert R. 1950- |
author_variant | r r h rr rrh d s l ds dsl h m m hm hmm p j r pj pjr j g t jg jgt |
building | Verbundindex |
bvnumber | BV047865079 |
collection | ZDB-30-PQE |
contents | About the Authors -- Preface -- Acknowledgments -- Personal Acknowledgment -- 1 Introduction -- Motivation for the Study of Forecaster Reasoning -- The Data Overload Problem -- GOES Satellite Products -- NEXRAD Radar Products -- So, How Much Data Are There? -- Coping with Data Overload -- Some Key Terms -- Sources of Information Concerning Forecaster Cognition -- 2 What Is the Forecasting Workspace Like? -- Evolution of the Modern Workstation-based Workplace -- The Rise of the Workstation: AFOS, McIDAS, and PROFS -- How Many Displays? -- Visualization Design -- PRAVDA and Met.3D -- Met.3D -- Conclusions -- A Day in the Life: A Cautionary Tale about Work System Design -- 3 How Do People Come to Be Forecasters? -- Historical Background -- Forecasting Training within Meteorological Education -- College-Level Education -- The Interdependence of Meteorology Education and Forecaster Training -- Forecaster Training -- An Ethnographic Study of How People Get to Be Forecasters -- New Learning Venues -- COMET -- INNOVATIVE WEATHER -- Some Not-so-Formal Learning Venues -- Conclusions -- 4 How Do Forecasters Describe How They Reason? -- Teamwork -- Knowledge -- Perception and Recognition -- Conceptual Models -- General Forecasting Principles -- Reasoning Process -- Forecasters' Descriptions of Forecaster Reasoning -- Conclusions -- 5 How Well Do Forecasters (and Forecasts) Perform? -- Challenges in Measuring the Goodness of Forecasts -- "Goodness" and the Context of Use -- The Challenges of Measurement -- Forecast Verification Research -- How Good Are Those Probability Forecasts? -- Predictability versus Understandability -- Linear Models: Can the Human Forecaster Outperform a Simple Linear Model? -- Forecast Quality Is More Than Just "Hit Rate" -- A Cautionary Tale -- Conclusions -- 6 What Characterizes Expertise? |
ctrlnum | (OCoLC)1302316558 (DE-599)BVBBV047865079 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV047865079</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220304s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262339407</subfield><subfield code="9">978-0-262-33940-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302316558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047865079</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoffman, Robert R.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1069781231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minding the weather</subfield><subfield code="b">how expert forecasters think</subfield><subfield code="c">Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts ; London, England</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 470 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">About the Authors -- Preface -- Acknowledgments -- Personal Acknowledgment -- 1 Introduction -- Motivation for the Study of Forecaster Reasoning -- The Data Overload Problem -- GOES Satellite Products -- NEXRAD Radar Products -- So, How Much Data Are There? -- Coping with Data Overload -- Some Key Terms -- Sources of Information Concerning Forecaster Cognition -- 2 What Is the Forecasting Workspace Like? -- Evolution of the Modern Workstation-based Workplace -- The Rise of the Workstation: AFOS, McIDAS, and PROFS -- How Many Displays? -- Visualization Design -- PRAVDA and Met.3D -- Met.3D -- Conclusions -- A Day in the Life: A Cautionary Tale about Work System Design -- 3 How Do People Come to Be Forecasters? -- Historical Background -- Forecasting Training within Meteorological Education -- College-Level Education -- The Interdependence of Meteorology Education and Forecaster Training -- Forecaster Training -- An Ethnographic Study of How People Get to Be Forecasters -- New Learning Venues -- COMET -- INNOVATIVE WEATHER -- Some Not-so-Formal Learning Venues -- Conclusions -- 4 How Do Forecasters Describe How They Reason? -- Teamwork -- Knowledge -- Perception and Recognition -- Conceptual Models -- General Forecasting Principles -- Reasoning Process -- Forecasters' Descriptions of Forecaster Reasoning -- Conclusions -- 5 How Well Do Forecasters (and Forecasts) Perform? -- Challenges in Measuring the Goodness of Forecasts -- "Goodness" and the Context of Use -- The Challenges of Measurement -- Forecast Verification Research -- How Good Are Those Probability Forecasts? -- Predictability versus Understandability -- Linear Models: Can the Human Forecaster Outperform a Simple Linear Model? -- Forecast Quality Is More Than Just "Hit Rate" -- A Cautionary Tale -- Conclusions -- 6 What Characterizes Expertise?</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The History of Expertise Studies -- Methods for Peering Into the Black Box -- Expert Knowledge -- Expert Reasoning -- Learning and Cognitive Flexibility -- Learning -- Cognitive Flexibility and Cognitive Transformation -- Expert Perceptual Skill -- Integrated Models of Expert "Macrocognition"--Conclusions -- 7 How Do Forecasters Get to Be Expert Forecasters? -- Expertise versus Intelligence -- Forecasting Competitions -- Recognition of the Need for Training to High Proficiency -- A General Proficiency Scale -- The Proficiency Scaling Process -- U.S. Navy Weather Forecasting Case Study -- U.S. Air Force Weather Forecasting Case Study -- Integration of the Findings -- The Forecasting Process -- The "Quick Size-Up"--Use of Computer Models -- Sensemaking -- Conclusion -- 8 What Does Research on Forecaster Knowledge Tell Us? -- Preparation -- Critical Decision Method -- Concept Mapping -- It Is Not All Just in the Head -- Conclusion -- 9 What Does Research on Forecaster Perception Tell Us? -- How and Why Diagrams and Visualizations Aid Sensemaking -- Display Design Principles: Some Work, Some Don't -- Interpretation of Weather Maps by Forecasters and Non-Forecasters -- Forecasters' Understanding of Weather Charts: Filling in the Gaps -- From Cues to Patterns to Dynamics -- Perceptual Operations during the Forecasting Process -- Conclusions -- 10 What Does Research on Forecaster Reasoning Tell Us? -- Mental Models -- Modeling Forecaster Reasoning -- Modeling Forecaster Macrocognition -- Generic versus Specific Models -- Flexecution in Forecasting -- Conclusions -- 11 Can a Machine Imitate the Human? -- Can Computers Be Made to Think Like Forecasters? -- The Structure of Forecasting KBSs -- So How Well Did the Expert Systems Perform? -- Peering into the Black Box -- Metamorphosis from Expert Systems to Intelligent Systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wettervorhersage</subfield><subfield code="0">(DE-588)4079256-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wettervorhersage</subfield><subfield code="0">(DE-588)4079256-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">LaDue, Daphne S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mogil, H. Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140356851</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roebber, Paul J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trafton, J. Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-262-03606-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4983518</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047865079 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:18:48Z |
indexdate | 2024-07-20T04:08:11Z |
institution | BVB |
isbn | 9780262339407 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033247645 |
oclc_num | 1302316558 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xiv, 470 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | The MIT Press |
record_format | marc |
spelling | Hoffman, Robert R. 1950- Verfasser (DE-588)1069781231 aut Minding the weather how expert forecasters think Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton Cambridge, Massachusetts ; London, England The MIT Press [2017] 1 Online-Ressource (xiv, 470 Seiten) txt rdacontent c rdamedia cr rdacarrier About the Authors -- Preface -- Acknowledgments -- Personal Acknowledgment -- 1 Introduction -- Motivation for the Study of Forecaster Reasoning -- The Data Overload Problem -- GOES Satellite Products -- NEXRAD Radar Products -- So, How Much Data Are There? -- Coping with Data Overload -- Some Key Terms -- Sources of Information Concerning Forecaster Cognition -- 2 What Is the Forecasting Workspace Like? -- Evolution of the Modern Workstation-based Workplace -- The Rise of the Workstation: AFOS, McIDAS, and PROFS -- How Many Displays? -- Visualization Design -- PRAVDA and Met.3D -- Met.3D -- Conclusions -- A Day in the Life: A Cautionary Tale about Work System Design -- 3 How Do People Come to Be Forecasters? -- Historical Background -- Forecasting Training within Meteorological Education -- College-Level Education -- The Interdependence of Meteorology Education and Forecaster Training -- Forecaster Training -- An Ethnographic Study of How People Get to Be Forecasters -- New Learning Venues -- COMET -- INNOVATIVE WEATHER -- Some Not-so-Formal Learning Venues -- Conclusions -- 4 How Do Forecasters Describe How They Reason? -- Teamwork -- Knowledge -- Perception and Recognition -- Conceptual Models -- General Forecasting Principles -- Reasoning Process -- Forecasters' Descriptions of Forecaster Reasoning -- Conclusions -- 5 How Well Do Forecasters (and Forecasts) Perform? -- Challenges in Measuring the Goodness of Forecasts -- "Goodness" and the Context of Use -- The Challenges of Measurement -- Forecast Verification Research -- How Good Are Those Probability Forecasts? -- Predictability versus Understandability -- Linear Models: Can the Human Forecaster Outperform a Simple Linear Model? -- Forecast Quality Is More Than Just "Hit Rate" -- A Cautionary Tale -- Conclusions -- 6 What Characterizes Expertise? The History of Expertise Studies -- Methods for Peering Into the Black Box -- Expert Knowledge -- Expert Reasoning -- Learning and Cognitive Flexibility -- Learning -- Cognitive Flexibility and Cognitive Transformation -- Expert Perceptual Skill -- Integrated Models of Expert "Macrocognition"--Conclusions -- 7 How Do Forecasters Get to Be Expert Forecasters? -- Expertise versus Intelligence -- Forecasting Competitions -- Recognition of the Need for Training to High Proficiency -- A General Proficiency Scale -- The Proficiency Scaling Process -- U.S. Navy Weather Forecasting Case Study -- U.S. Air Force Weather Forecasting Case Study -- Integration of the Findings -- The Forecasting Process -- The "Quick Size-Up"--Use of Computer Models -- Sensemaking -- Conclusion -- 8 What Does Research on Forecaster Knowledge Tell Us? -- Preparation -- Critical Decision Method -- Concept Mapping -- It Is Not All Just in the Head -- Conclusion -- 9 What Does Research on Forecaster Perception Tell Us? -- How and Why Diagrams and Visualizations Aid Sensemaking -- Display Design Principles: Some Work, Some Don't -- Interpretation of Weather Maps by Forecasters and Non-Forecasters -- Forecasters' Understanding of Weather Charts: Filling in the Gaps -- From Cues to Patterns to Dynamics -- Perceptual Operations during the Forecasting Process -- Conclusions -- 10 What Does Research on Forecaster Reasoning Tell Us? -- Mental Models -- Modeling Forecaster Reasoning -- Modeling Forecaster Macrocognition -- Generic versus Specific Models -- Flexecution in Forecasting -- Conclusions -- 11 Can a Machine Imitate the Human? -- Can Computers Be Made to Think Like Forecasters? -- The Structure of Forecasting KBSs -- So How Well Did the Expert Systems Perform? -- Peering into the Black Box -- Metamorphosis from Expert Systems to Intelligent Systems Meteorologie (DE-588)4038953-4 gnd rswk-swf Wettervorhersage (DE-588)4079256-0 gnd rswk-swf Wettervorhersage (DE-588)4079256-0 s Meteorologie (DE-588)4038953-4 s DE-604 LaDue, Daphne S. Verfasser aut Mogil, H. Michael Verfasser (DE-588)140356851 aut Roebber, Paul J. Verfasser aut Trafton, J. Gregory Verfasser aut Erscheint auch als Druck-Ausgabe 978-0-262-03606-1 |
spellingShingle | Hoffman, Robert R. 1950- LaDue, Daphne S. Mogil, H. Michael Roebber, Paul J. Trafton, J. Gregory Minding the weather how expert forecasters think About the Authors -- Preface -- Acknowledgments -- Personal Acknowledgment -- 1 Introduction -- Motivation for the Study of Forecaster Reasoning -- The Data Overload Problem -- GOES Satellite Products -- NEXRAD Radar Products -- So, How Much Data Are There? -- Coping with Data Overload -- Some Key Terms -- Sources of Information Concerning Forecaster Cognition -- 2 What Is the Forecasting Workspace Like? -- Evolution of the Modern Workstation-based Workplace -- The Rise of the Workstation: AFOS, McIDAS, and PROFS -- How Many Displays? -- Visualization Design -- PRAVDA and Met.3D -- Met.3D -- Conclusions -- A Day in the Life: A Cautionary Tale about Work System Design -- 3 How Do People Come to Be Forecasters? -- Historical Background -- Forecasting Training within Meteorological Education -- College-Level Education -- The Interdependence of Meteorology Education and Forecaster Training -- Forecaster Training -- An Ethnographic Study of How People Get to Be Forecasters -- New Learning Venues -- COMET -- INNOVATIVE WEATHER -- Some Not-so-Formal Learning Venues -- Conclusions -- 4 How Do Forecasters Describe How They Reason? -- Teamwork -- Knowledge -- Perception and Recognition -- Conceptual Models -- General Forecasting Principles -- Reasoning Process -- Forecasters' Descriptions of Forecaster Reasoning -- Conclusions -- 5 How Well Do Forecasters (and Forecasts) Perform? -- Challenges in Measuring the Goodness of Forecasts -- "Goodness" and the Context of Use -- The Challenges of Measurement -- Forecast Verification Research -- How Good Are Those Probability Forecasts? -- Predictability versus Understandability -- Linear Models: Can the Human Forecaster Outperform a Simple Linear Model? -- Forecast Quality Is More Than Just "Hit Rate" -- A Cautionary Tale -- Conclusions -- 6 What Characterizes Expertise? Meteorologie (DE-588)4038953-4 gnd Wettervorhersage (DE-588)4079256-0 gnd |
subject_GND | (DE-588)4038953-4 (DE-588)4079256-0 |
title | Minding the weather how expert forecasters think |
title_auth | Minding the weather how expert forecasters think |
title_exact_search | Minding the weather how expert forecasters think |
title_exact_search_txtP | Minding the weather how expert forecasters think |
title_full | Minding the weather how expert forecasters think Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton |
title_fullStr | Minding the weather how expert forecasters think Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton |
title_full_unstemmed | Minding the weather how expert forecasters think Robert R. Hoffman, Daphne S. LaDue, H. Michael Mogil, Paul J. Roebber, and J. Gregory Trafton |
title_short | Minding the weather |
title_sort | minding the weather how expert forecasters think |
title_sub | how expert forecasters think |
topic | Meteorologie (DE-588)4038953-4 gnd Wettervorhersage (DE-588)4079256-0 gnd |
topic_facet | Meteorologie Wettervorhersage |
work_keys_str_mv | AT hoffmanrobertr mindingtheweatherhowexpertforecastersthink AT laduedaphnes mindingtheweatherhowexpertforecastersthink AT mogilhmichael mindingtheweatherhowexpertforecastersthink AT roebberpaulj mindingtheweatherhowexpertforecastersthink AT traftonjgregory mindingtheweatherhowexpertforecastersthink |