Deep learning applications for cyber-physical systems:
"This book focuses on multidisciplinary aspects of computational engineering and industrial management engineering such as deep learning and supply chain management, covering trending applications such as Smart Agriculture, Smart Healthcare System, Cyber Physical Systems
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania
IGI Global
[2021]
|
Schlagworte: | |
Online-Zugang: | DE-1050 DE-573 DE-898 DE-1049 DE-83 DE-91 DE-706 Volltext |
Zusammenfassung: | "This book focuses on multidisciplinary aspects of computational engineering and industrial management engineering such as deep learning and supply chain management, covering trending applications such as Smart Agriculture, Smart Healthcare System, Cyber Physical Systems |
Beschreibung: | Includes bibliographical references and index Chapter 1. COVID-19 spread prediction using prophet and data fusion algorithm -- Chapter 2. House plant leaf disease detection and classification using machine learning -- Chapter 3. Deep learning approaches for sentiment analysis challenges and future issues -- Chapter 4. Detection and classification of leaf disease using deep neural network -- Chapter 5. Development of an efficient monitoring system using fog computing and machine learning algorithms on healthcare 4.0 -- Chapter 6. Efficient facial expression recognition using deep learning techniques -- Chapter 7. Hypertensive retinopathy classification using improved clustering algorithm and the improved convolution neural network -- Chapter 8. Industrial automation using mobile cyber physical systems -- Chapter 9. Intrusion detection system using deep learning -- Chapter 10. Machine learning-based approach for predictive analytics in healthcare -- Chapter 11. Medical cyber physical system architecture for smart medical pumps -- Chapter 12. Predictive analytics for healthcare -- Chapter 13. Consistent hashing and real-time task scheduling in fog computing. - Mode of access: World Wide Web |
Beschreibung: | 1 Online-Ressource (293 Seiten) |
ISBN: | 9781799881636 |
DOI: | 10.4018/978-1-7998-8161-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047856089 | ||
003 | DE-604 | ||
005 | 20230515 | ||
007 | cr|uuu---uuuuu | ||
008 | 220225s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781799881636 |9 978-1-79988-163-6 | ||
024 | 7 | |a 10.4018/978-1-7998-8161-2 |2 doi | |
035 | |a (ZDB-98-IGB)00268285 | ||
035 | |a (OCoLC)1302319276 | ||
035 | |a (DE-599)BVBBV047856089 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-706 |a DE-573 |a DE-1050 |a DE-1049 |a DE-83 | ||
082 | 0 | |a 006.331 | |
245 | 1 | 0 | |a Deep learning applications for cyber-physical systems |c Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor |
264 | 1 | |a Hershey, Pennsylvania |b IGI Global |c [2021] | |
300 | |a 1 Online-Ressource (293 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Chapter 1. COVID-19 spread prediction using prophet and data fusion algorithm -- Chapter 2. House plant leaf disease detection and classification using machine learning -- Chapter 3. Deep learning approaches for sentiment analysis challenges and future issues -- Chapter 4. Detection and classification of leaf disease using deep neural network -- Chapter 5. Development of an efficient monitoring system using fog computing and machine learning algorithms on healthcare 4.0 -- Chapter 6. Efficient facial expression recognition using deep learning techniques -- Chapter 7. Hypertensive retinopathy classification using improved clustering algorithm and the improved convolution neural network -- Chapter 8. Industrial automation using mobile cyber physical systems -- Chapter 9. Intrusion detection system using deep learning -- Chapter 10. Machine learning-based approach for predictive analytics in healthcare -- Chapter 11. Medical cyber physical system architecture for smart medical pumps -- Chapter 12. Predictive analytics for healthcare -- Chapter 13. Consistent hashing and real-time task scheduling in fog computing. - Mode of access: World Wide Web | ||
520 | |a "This book focuses on multidisciplinary aspects of computational engineering and industrial management engineering such as deep learning and supply chain management, covering trending applications such as Smart Agriculture, Smart Healthcare System, Cyber Physical Systems | ||
650 | 4 | |a Systems engineering | |
650 | 4 | |a Machine learning |x Industrial applications | |
650 | 4 | |a Cooperating objects (Computer systems) |x Industrial applications | |
700 | 1 | |a Mundada, Monica R. |4 edt | |
700 | 1 | |a Shedole, Seema |4 edt | |
700 | 1 | |a Shilpa, M. |4 edt | |
710 | 2 | |a IGI Global |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781799881612 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1799881628 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781799881629 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 179988161X |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 179988161X |
856 | 4 | 0 | |u https://doi.org/10.4018/978-1-7998-8161-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB |a ZDB-1-IGE | ||
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-1050 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-573 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-898 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-1049 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-83 |p ZDB-98-IGB |q TUB_EBS_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8161-2 |l DE-706 |p ZDB-1-IGE |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805079032441602048 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Mundada, Monica R. Shedole, Seema Shilpa, M. |
author2_role | edt edt edt |
author2_variant | m r m mr mrm s s ss m s ms |
author_facet | Mundada, Monica R. Shedole, Seema Shilpa, M. |
building | Verbundindex |
bvnumber | BV047856089 |
collection | ZDB-98-IGB ZDB-1-IGE |
ctrlnum | (ZDB-98-IGB)00268285 (OCoLC)1302319276 (DE-599)BVBBV047856089 |
dewey-full | 006.331 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.331 |
dewey-search | 006.331 |
dewey-sort | 16.331 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.4018/978-1-7998-8161-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV047856089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230515</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220225s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781799881636</subfield><subfield code="9">978-1-79988-163-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-7998-8161-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00268285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302319276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047856089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.331</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning applications for cyber-physical systems</subfield><subfield code="c">Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania</subfield><subfield code="b">IGI Global</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (293 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. COVID-19 spread prediction using prophet and data fusion algorithm -- Chapter 2. House plant leaf disease detection and classification using machine learning -- Chapter 3. Deep learning approaches for sentiment analysis challenges and future issues -- Chapter 4. Detection and classification of leaf disease using deep neural network -- Chapter 5. Development of an efficient monitoring system using fog computing and machine learning algorithms on healthcare 4.0 -- Chapter 6. Efficient facial expression recognition using deep learning techniques -- Chapter 7. Hypertensive retinopathy classification using improved clustering algorithm and the improved convolution neural network -- Chapter 8. Industrial automation using mobile cyber physical systems -- Chapter 9. Intrusion detection system using deep learning -- Chapter 10. Machine learning-based approach for predictive analytics in healthcare -- Chapter 11. Medical cyber physical system architecture for smart medical pumps -- Chapter 12. Predictive analytics for healthcare -- Chapter 13. Consistent hashing and real-time task scheduling in fog computing. - Mode of access: World Wide Web</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book focuses on multidisciplinary aspects of computational engineering and industrial management engineering such as deep learning and supply chain management, covering trending applications such as Smart Agriculture, Smart Healthcare System, Cyber Physical Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperating objects (Computer systems)</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mundada, Monica R.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shedole, Seema</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shilpa, M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781799881612</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1799881628</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781799881629</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">179988161X</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">179988161X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield><subfield code="a">ZDB-1-IGE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-1049</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-83</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUB_EBS_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8161-2</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047856089 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:16:18Z |
indexdate | 2024-07-20T06:38:32Z |
institution | BVB |
isbn | 9781799881636 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033238828 |
oclc_num | 1302319276 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-573 DE-1050 DE-1049 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-573 DE-1050 DE-1049 DE-83 |
physical | 1 Online-Ressource (293 Seiten) |
psigel | ZDB-98-IGB ZDB-1-IGE ZDB-98-IGB FHR_PDA_IGB_Kauf ZDB-98-IGB TUB_EBS_IGB ZDB-98-IGB TUM_Paketkauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | IGI Global |
record_format | marc |
spelling | Deep learning applications for cyber-physical systems Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor Hershey, Pennsylvania IGI Global [2021] 1 Online-Ressource (293 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Chapter 1. COVID-19 spread prediction using prophet and data fusion algorithm -- Chapter 2. House plant leaf disease detection and classification using machine learning -- Chapter 3. Deep learning approaches for sentiment analysis challenges and future issues -- Chapter 4. Detection and classification of leaf disease using deep neural network -- Chapter 5. Development of an efficient monitoring system using fog computing and machine learning algorithms on healthcare 4.0 -- Chapter 6. Efficient facial expression recognition using deep learning techniques -- Chapter 7. Hypertensive retinopathy classification using improved clustering algorithm and the improved convolution neural network -- Chapter 8. Industrial automation using mobile cyber physical systems -- Chapter 9. Intrusion detection system using deep learning -- Chapter 10. Machine learning-based approach for predictive analytics in healthcare -- Chapter 11. Medical cyber physical system architecture for smart medical pumps -- Chapter 12. Predictive analytics for healthcare -- Chapter 13. Consistent hashing and real-time task scheduling in fog computing. - Mode of access: World Wide Web "This book focuses on multidisciplinary aspects of computational engineering and industrial management engineering such as deep learning and supply chain management, covering trending applications such as Smart Agriculture, Smart Healthcare System, Cyber Physical Systems Systems engineering Machine learning Industrial applications Cooperating objects (Computer systems) Industrial applications Mundada, Monica R. edt Shedole, Seema edt Shilpa, M. edt IGI Global Sonstige oth Erscheint auch als Druck-Ausgabe 9781799881612 Erscheint auch als Druck-Ausgabe 1799881628 Erscheint auch als Druck-Ausgabe 9781799881629 Erscheint auch als Druck-Ausgabe 179988161X https://doi.org/10.4018/978-1-7998-8161-2 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Deep learning applications for cyber-physical systems Systems engineering Machine learning Industrial applications Cooperating objects (Computer systems) Industrial applications |
title | Deep learning applications for cyber-physical systems |
title_auth | Deep learning applications for cyber-physical systems |
title_exact_search | Deep learning applications for cyber-physical systems |
title_exact_search_txtP | Deep learning applications for cyber-physical systems |
title_full | Deep learning applications for cyber-physical systems Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor |
title_fullStr | Deep learning applications for cyber-physical systems Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor |
title_full_unstemmed | Deep learning applications for cyber-physical systems Monica Mundada, Seema Shedole, K G Srinivasa, and M. Shilpa, editor |
title_short | Deep learning applications for cyber-physical systems |
title_sort | deep learning applications for cyber physical systems |
topic | Systems engineering Machine learning Industrial applications Cooperating objects (Computer systems) Industrial applications |
topic_facet | Systems engineering Machine learning Industrial applications Cooperating objects (Computer systems) Industrial applications |
url | https://doi.org/10.4018/978-1-7998-8161-2 |
work_keys_str_mv | AT mundadamonicar deeplearningapplicationsforcyberphysicalsystems AT shedoleseema deeplearningapplicationsforcyberphysicalsystems AT shilpam deeplearningapplicationsforcyberphysicalsystems AT igiglobal deeplearningapplicationsforcyberphysicalsystems |