Set theory:
Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments |
Beschreibung: | Title from publisher's bibliographic system (viewed on 21 Jan 2022) |
Beschreibung: | 1 Online-Ressource (73 Seiten) |
ISBN: | 9781108981828 |
DOI: | 10.1017/9781108981828 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047855377 | ||
003 | DE-604 | ||
005 | 20220311 | ||
007 | cr|uuu---uuuuu | ||
008 | 220225s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108981828 |c Online |9 978-1-108-98182-8 | ||
024 | 7 | |a 10.1017/9781108981828 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108981828 | ||
035 | |a (OCoLC)1302319090 | ||
035 | |a (DE-599)BVBBV047855377 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 511.322 | |
084 | |a CC 2500 |0 (DE-625)17609: |2 rvk | ||
100 | 1 | |a Burgess, John P. |d 1948- |0 (DE-588)139005250 |4 aut | |
245 | 1 | 0 | |a Set theory |c John P. Burgess |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (73 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 21 Jan 2022) | ||
520 | |a Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments | ||
650 | 4 | |a Set theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-98691-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108981828 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033238130 | ||
966 | e | |u https://doi.org/10.1017/9781108981828 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108981828 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183422618304512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Burgess, John P. 1948- |
author_GND | (DE-588)139005250 |
author_facet | Burgess, John P. 1948- |
author_role | aut |
author_sort | Burgess, John P. 1948- |
author_variant | j p b jp jpb |
building | Verbundindex |
bvnumber | BV047855377 |
classification_rvk | CC 2500 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108981828 (OCoLC)1302319090 (DE-599)BVBBV047855377 |
dewey-full | 511.322 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.322 |
dewey-search | 511.322 |
dewey-sort | 3511.322 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
discipline_str_mv | Mathematik Philosophie |
doi_str_mv | 10.1017/9781108981828 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02041nmm a2200397zc 4500</leader><controlfield tag="001">BV047855377</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220311 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220225s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108981828</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-98182-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108981828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108981828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302319090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047855377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.322</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2500</subfield><subfield code="0">(DE-625)17609:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burgess, John P.</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)139005250</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory</subfield><subfield code="c">John P. Burgess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (73 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 21 Jan 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-98691-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108981828</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033238130</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981828</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981828</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047855377 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:16:01Z |
indexdate | 2024-07-10T09:23:12Z |
institution | BVB |
isbn | 9781108981828 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033238130 |
oclc_num | 1302319090 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (73 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Burgess, John P. 1948- (DE-588)139005250 aut Set theory John P. Burgess Cambridge Cambridge University Press 2022 1 Online-Ressource (73 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 21 Jan 2022) Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments Set theory Erscheint auch als Druck-Ausgabe 978-1-108-98691-5 https://doi.org/10.1017/9781108981828 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Burgess, John P. 1948- Set theory Set theory |
title | Set theory |
title_auth | Set theory |
title_exact_search | Set theory |
title_exact_search_txtP | Set theory |
title_full | Set theory John P. Burgess |
title_fullStr | Set theory John P. Burgess |
title_full_unstemmed | Set theory John P. Burgess |
title_short | Set theory |
title_sort | set theory |
topic | Set theory |
topic_facet | Set theory |
url | https://doi.org/10.1017/9781108981828 |
work_keys_str_mv | AT burgessjohnp settheory |