Computational fluid dynamics for incompressible flows:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | xxiii, 391 Seiten Illustrationen |
ISBN: | 9780367524326 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047853366 | ||
003 | DE-604 | ||
005 | 20220502 | ||
007 | t | ||
008 | 220224s2021 a||| |||| 00||| eng d | ||
020 | |a 9780367524326 |c pbk. |9 978-0-367-52432-6 | ||
035 | |a (OCoLC)1312705346 | ||
035 | |a (DE-599)BVBBV047853366 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 620.10640150999996 | |
100 | 1 | |a Roychowdhury, D. G. |e Verfasser |0 (DE-588)1256041793 |4 aut | |
245 | 1 | 0 | |a Computational fluid dynamics for incompressible flows |c D. G. Roychowdhury |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a xxiii, 391 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgements -- Chapter 1. Overview of CFD -- 1.1 Introduction -- 1.2 Basic Principles of CFD -- 1.3 What Does a CFD Algorithm Do? -- 1.4 Stages of a CFD Analysis -- 1.4.1 Pre-Processor -- 1.4.2 Solver -- 1.4.3 Post-Processor -- 1.5 Governing Equations -- 1.6 Discretization -- 1.6.1 Finite Difference Method -- 1.6.2 Finite Volume Method -- 1.6.3 Finite Element Method -- 1.7 Discretization Properties -- Questions: -- Chapter 2. Governing Equations and Classification of PDE -- Governing Equations -- 2.1 Introduction -- 2.1.1 Integral Form -- 2.1.2 Differential Form -- 2.2 Conservative Form of the Flow Equations -- 2.2.1 Mass (Continuity) -- 2.2.1.1 Derivation of Continuity Equation -- 2.2.2 Momentum Equations -- 2.2.2.1 Derivation of X-Momentum Equation -- 2.2.3 Energy Equation -- 2.2.3.1 Derivation of Energy Equation -- 2.2.4 General Scalar -- 2.3 Some Comments -- 2.3.1 Conservative and Non-Conservative Forms of Equations -- 2.3.2 Compressible and Incompressible Flow -- Physical and Mathematical Classification of Partial Differential Equations -- 2.4 Equilibrium Problems -- 2.5 Marching Problems -- 2.6 Mathematical Classification -- 2.7 Important Equations -- 2.8 Boundary Conditions (BCs) -- 2.8.1 Inlet Boundary -- 2.8.1.1 Inflow -- 2.8.1.2 Stagnation (Reservoir) -- 2.8.2 Outlet Boundary -- 2.8.2.1 Outflow -- 2.8.2.2 Pressure -- 2.8.2.3 Radiation (Convection) -- 2.8.3 Wall Boundaries -- 2.8.3.1 No-Slip Wall -- 2.8.3.2 Slip Wall -- 2.8.4 Other Boundary Conditions -- 2.8.4.1 Symmetry Plane and Axis Boundary -- 2.8.4.2 Periodic -- 2.9 Summary -- Questions -- Chapter 3. Finite Difference Method: Fundamentals -- 3.1 Introduction -- 3.2 Taylor Series Expansion -- 3.3 Unequal Grid Spacing -- 3.4 Difference Representation of PDE -- 3.4.1 Errors | |
505 | 8 | |a 3.4.1.1 Truncation Error -- 3.4.1.2 Round-off Error -- 3.4.2 Consistency -- 3.4.3 Stability -- 3.4.3.1 Von Neumann's Method -- 3.4.4 Convergence -- 3.4.5 Lax's Equivalence Theorem -- 3.4.6 Courant Number -- 3.5 Examples -- 3.6 Summary -- Questions: -- Chapter 4. Finite Difference Method: Application -- 4.1 Introduction -- 4.2 One-Dimensional Diffusion Equations -- 4.2.1 Explicit Methods -- 4.2.1.1 The Forward Time, Central Space -- 4.2.1.2 The Richardson's Method -- 4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) -- 4.2.2 Implicit Methods -- 4.2.2.1 The Classical Implicit Method -- 4.2.2.2 The Crank-Nicolson Method -- 4.2.2.3 The Method of Weighted Averages -- 4.3 One-Dimensional Transport Equations -- 4.3.1 The Wave Equation -- 4.3.1.1 The FTCS Method -- 4.3.1.2 Upwind Differencing -- 4.3.1.3 The LaxMethod (Lax-Friedrichs Method) -- 4.3.1.4 The Lax-Wendroff Method -- 4.3.1.5 The Two-Step Lax-Wendroff Method -- 4.3.1.6 The MacCormack Method -- 4.3.1.7 The Beam-Warming Method -- 4.3.1.8 The Implicit Method -- 4.3.2 The Complete Transport Equation -- 4.3.2.1 Central Difference -- 4.3.2.2 The Richardson Method -- 4.3.2.3 The DuFort-Frankel Method -- 4.3.2.4 The Upwind Method -- 4.4 Two-Dimensional Diffusion Equation -- 4.4.1 The Explicit Method -- 4.4.2 Implicit Methods -- 4.4.2.1 The Fully Implicit Method -- 4.4.2.2 The Crank-Nicolson Method -- 4.4.2.3 The Alternate Direction Implicit (ADI) Method -- 4.4.2.4 Comments on Diffusion Equations -- 4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables -- 4.4.2.6 The Grid (Mesh) Independence Study -- 4.5 Burgers' Equation -- 4.5.1 The Inviscid Burgers' Equation -- 4.5.1.1 Upwind Differencing -- 4.5.1.2 The Lax (Lax-Friedrichs) Method -- 4.5.1.3 The Lax-Wendroff Method -- 4.5.1.4 The MacCormack Method -- 4.5.1.5 Implicit Methods -- 4.5.1.6 The Godunov Method -- 4.5.1.7 The Roe Method | |
505 | 8 | |a 4.5.2 The Viscid Burgers' Equation -- 4.5.2.1 The FTCS Method -- 4.5.2.2 The DuFort-Frankel Method -- 4.5.2.3 The Lax-Wendroff Method -- 4.5.2.4 The MacCormack Method -- 4.6 The Laplace Equation -- 4.7 Examples -- 4.8 Summary -- Questions -- Chapter 5. Finite Volume Method -- 5.1 Introduction -- 5.2 The Diffusion Equation -- 5.2.1 The Steady-State One-Dimensional Diffusion Equation -- 5.2.2 Discretization of the Source Term -- 5.2.3 Discretized Equation at Boundaries -- 5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) -- 5.2.3.2 Insulated Boundary -- 5.2.3.3 Mixed Boundary Conditions -- 5.2.4 Assembling the Algebraic Equations -- 5.2.5 Extension to Two Dimensions -- 5.2.6 Extension to Three Dimensions -- 5.2.7 Desirable Properties of a Discretization Scheme -- 5.2.8 Further Comments on Interface Diffusion Coefficients -- 5.3 The Convection-Diffusion Equation -- 5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation -- 5.3.1.1 The Central Differencing Scheme -- 5.3.1.2 The Upwind Differencing Scheme -- 5.3.1.3 Exact Solution -- 5.3.1.4 The Exponential Scheme -- 5.3.1.5 The Hybrid Differencing Scheme -- 5.3.1.6 The Second Order Upwind (SOU) Scheme -- 5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme -- 5.3.1.8 The FROMM Scheme -- 5.3.1.9 Advantages and Disadvantages of Various Convective Schemes -- 5.3.2 Deferred Correction Approach -- 5.3.2.1 CDS -- 5.3.2.2 SOU -- 5.3.2.3 QUICK -- 5.3.2.4 FROMM -- 5.3.3 Extension to Two Dimension -- 5.3.3.1 UDS -- 5.3.3.2 CDS -- 5.3.3.3 SOU -- 5.3.3.4 QUICK -- 5.3.3.5 FROMM -- 5.3.4 Extension to Three Dimension -- 5.3.4.1 UDS -- 5.3.4.2 CDS -- 5.3.4.3 SOU -- 5.3.4.4 QUICK -- 5.3.4.5 FROMM -- 5.3.5 High Resolution and Bounded Convective Schemes -- 5.3.5.1 Normalized Variable Formulation -- 5.3.5.2 Convective Boundedness Criteria | |
505 | 8 | |a 5.3.5.3 High-Resolution Schemes -- 5.3.5.4 The TVD Framework -- 5.3.5.5 Implementation of Various Convective Schemes in Code -- 5.4 Time-Dependent Methods -- 5.4.1 One-Step Methods -- 5.4.1.1 Forward Differencing (Euler Method) -- 5.4.1.2 Backward Differencing (Backward Euler) -- 5.4.1.3 Central Differencing (Crank-Nicolson) -- 5.5 Time Discretization Methods Applied to the General Scalar Transport Equation -- 5.5.1 Forward Differencing - Explicit Scheme -- 5.5.2 Backward Differencing - Implicit Scheme -- 5.5.3 Crank-Nicolson - Central Difference Scheme: -- 5.6 Courant Number -- 5.7 Uses of Time-Marching in CFD -- 5.8 Implementation of Boundary Conditions in Code -- 5.8.1 Generalized Boundary Conditions -- 5.8.2 Convective Boundary Conditions -- 5.9 Examples -- 5.10 Summary -- Questions -- Chapter 6. Solution of Incompressible Navier-Stokes Equations -- 6.1 Introduction -- 6.2 Pressure-Velocity Coupling -- 6.3 The Vorticity-Stream Function Method -- 6.3.1 Boundary Conditions -- 6.4 Primitive Variable Methods -- 6.4.1 Co-located Storage of Variables -- 6.4.2 Staggered Grid -- 6.5 Solution Methods for the Primitive Variable Form of N-S Equations -- 6.5.1 The Artificial Compressibility Method -- 6.5.2 The Pressure Correction Approach -- 6.5.2.1 The MAC Method -- 6.5.2.2 The Fractional Step Pressure Projection Method -- 6.6 The SIMPLE Method -- 6.6.1 Derivation of Velocity Correction and Pressure Correction Equations -- 6.6.1.1 Pressure and Velocity Corrections -- 6.6.2 Pressure Correction Equation -- 6.6.3 The SIMPLE Algorithm -- 6.7 Variants of SIMPLE -- 6.7.1 The SIMPLER Algorithm -- 6.7.2 The SIMPLEC Algorithm -- 6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm -- 6.8 Summary -- Questions: -- Chapter 7. Finite Volume Method for Complex Geometries -- 7.1 Introduction -- 7.2 Staggered Grid Algorithm -- 7.3 The Co-located Grid Algorithm | |
505 | 8 | |a 7.4 Discretization Methods for Non-Orthogonal Structured Grids -- 7.4.1 The Continuity Equation -- 7.4.2 The Transport Equation -- 7.4.2.1 Discretization of Convective Flux -- 7.4.2.2 Discretization of Diffusive Flux -- 7.4.2.3 Discretization of Pressure Terms -- 7.4.2.4 Implementation of the QUICK Scheme -- 7.5 Solution of the Pressure Field -- 7.5.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.5.2 Implementation of Momentum Interpolation -- 7.6 Extension to Three Dimension -- 7.6.1 Discretization of Continuity Equations -- 7.6.2 Discretization of Convective Flux -- 7.6.3 Discretization of Diffusive Flux -- 7.6.4 Discretization of the Pressure Term -- 7.6.5 Implementation of the QUICK Scheme -- 7.6.6 Implementation of the SIMPLE Algorithm -- 7.7 Discretization Method for the Cartesian Structured Grid -- 7.7.1 The Continuity Equation -- 7.7.2 The Transport Equation -- 7.7.2.1 Discretization of Convective Flux -- 7.7.2.2 Discretization of Diffusive Flux -- 7.7.2.3 Discretization of the Pressure Term -- 7.7.2.4 Implementation of the QUICK Scheme -- 7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation -- 7.7.2.6 Implementation of the Momentum Interpolation -- 7.8 Discretization Method for the Non-Orthogonal Unstructured Grid -- 7.8.1 The Continuity Equation -- 7.8.2 The Transport Equation -- 7.8.2.1 Discretization of Convective Flux -- 7.8.2.2 Discretization of Diffusive Flux -- 7.8.2.3 Discretization of the Pressure Term -- 7.9 Solution of the Pressure Field -- 7.9.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.9.2 Implementation of the Momentum Interpolation -- 7.9.3 Implementation of Higher-Order Schemes -- 7.10 Summary -- Questions -- Chapter 8. Solution of Algebraic Equations -- 8.1 Introduction -- 8.2 Direct Methods -- 8.2.1 Gauss Elimination -- 8.2.2 LU Decomposition | |
505 | 8 | |a 8.2.3 Tri-Diagonal Matrix Algorithm | |
650 | 4 | |a Computational fluid dynamics-Textbooks | |
650 | 0 | 7 | |a Inkompressible Strömung |0 (DE-588)4129759-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fluiddynamik |0 (DE-588)1172567794 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fluiddynamik |0 (DE-588)1172567794 |D s |
689 | 0 | 1 | |a Inkompressible Strömung |0 (DE-588)4129759-3 |D s |
689 | 0 | |5 DE-604 | |
775 | 0 | 8 | |i Äquivalent |n Druck-Ausgabe, Hardcover |z 978-0-367-40806-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-367-80917-1 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033236179 |
Datensatz im Suchindex
_version_ | 1804183419031126016 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Roychowdhury, D. G. |
author_GND | (DE-588)1256041793 |
author_facet | Roychowdhury, D. G. |
author_role | aut |
author_sort | Roychowdhury, D. G. |
author_variant | d g r dg dgr |
building | Verbundindex |
bvnumber | BV047853366 |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgements -- Chapter 1. Overview of CFD -- 1.1 Introduction -- 1.2 Basic Principles of CFD -- 1.3 What Does a CFD Algorithm Do? -- 1.4 Stages of a CFD Analysis -- 1.4.1 Pre-Processor -- 1.4.2 Solver -- 1.4.3 Post-Processor -- 1.5 Governing Equations -- 1.6 Discretization -- 1.6.1 Finite Difference Method -- 1.6.2 Finite Volume Method -- 1.6.3 Finite Element Method -- 1.7 Discretization Properties -- Questions: -- Chapter 2. Governing Equations and Classification of PDE -- Governing Equations -- 2.1 Introduction -- 2.1.1 Integral Form -- 2.1.2 Differential Form -- 2.2 Conservative Form of the Flow Equations -- 2.2.1 Mass (Continuity) -- 2.2.1.1 Derivation of Continuity Equation -- 2.2.2 Momentum Equations -- 2.2.2.1 Derivation of X-Momentum Equation -- 2.2.3 Energy Equation -- 2.2.3.1 Derivation of Energy Equation -- 2.2.4 General Scalar -- 2.3 Some Comments -- 2.3.1 Conservative and Non-Conservative Forms of Equations -- 2.3.2 Compressible and Incompressible Flow -- Physical and Mathematical Classification of Partial Differential Equations -- 2.4 Equilibrium Problems -- 2.5 Marching Problems -- 2.6 Mathematical Classification -- 2.7 Important Equations -- 2.8 Boundary Conditions (BCs) -- 2.8.1 Inlet Boundary -- 2.8.1.1 Inflow -- 2.8.1.2 Stagnation (Reservoir) -- 2.8.2 Outlet Boundary -- 2.8.2.1 Outflow -- 2.8.2.2 Pressure -- 2.8.2.3 Radiation (Convection) -- 2.8.3 Wall Boundaries -- 2.8.3.1 No-Slip Wall -- 2.8.3.2 Slip Wall -- 2.8.4 Other Boundary Conditions -- 2.8.4.1 Symmetry Plane and Axis Boundary -- 2.8.4.2 Periodic -- 2.9 Summary -- Questions -- Chapter 3. Finite Difference Method: Fundamentals -- 3.1 Introduction -- 3.2 Taylor Series Expansion -- 3.3 Unequal Grid Spacing -- 3.4 Difference Representation of PDE -- 3.4.1 Errors 3.4.1.1 Truncation Error -- 3.4.1.2 Round-off Error -- 3.4.2 Consistency -- 3.4.3 Stability -- 3.4.3.1 Von Neumann's Method -- 3.4.4 Convergence -- 3.4.5 Lax's Equivalence Theorem -- 3.4.6 Courant Number -- 3.5 Examples -- 3.6 Summary -- Questions: -- Chapter 4. Finite Difference Method: Application -- 4.1 Introduction -- 4.2 One-Dimensional Diffusion Equations -- 4.2.1 Explicit Methods -- 4.2.1.1 The Forward Time, Central Space -- 4.2.1.2 The Richardson's Method -- 4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) -- 4.2.2 Implicit Methods -- 4.2.2.1 The Classical Implicit Method -- 4.2.2.2 The Crank-Nicolson Method -- 4.2.2.3 The Method of Weighted Averages -- 4.3 One-Dimensional Transport Equations -- 4.3.1 The Wave Equation -- 4.3.1.1 The FTCS Method -- 4.3.1.2 Upwind Differencing -- 4.3.1.3 The LaxMethod (Lax-Friedrichs Method) -- 4.3.1.4 The Lax-Wendroff Method -- 4.3.1.5 The Two-Step Lax-Wendroff Method -- 4.3.1.6 The MacCormack Method -- 4.3.1.7 The Beam-Warming Method -- 4.3.1.8 The Implicit Method -- 4.3.2 The Complete Transport Equation -- 4.3.2.1 Central Difference -- 4.3.2.2 The Richardson Method -- 4.3.2.3 The DuFort-Frankel Method -- 4.3.2.4 The Upwind Method -- 4.4 Two-Dimensional Diffusion Equation -- 4.4.1 The Explicit Method -- 4.4.2 Implicit Methods -- 4.4.2.1 The Fully Implicit Method -- 4.4.2.2 The Crank-Nicolson Method -- 4.4.2.3 The Alternate Direction Implicit (ADI) Method -- 4.4.2.4 Comments on Diffusion Equations -- 4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables -- 4.4.2.6 The Grid (Mesh) Independence Study -- 4.5 Burgers' Equation -- 4.5.1 The Inviscid Burgers' Equation -- 4.5.1.1 Upwind Differencing -- 4.5.1.2 The Lax (Lax-Friedrichs) Method -- 4.5.1.3 The Lax-Wendroff Method -- 4.5.1.4 The MacCormack Method -- 4.5.1.5 Implicit Methods -- 4.5.1.6 The Godunov Method -- 4.5.1.7 The Roe Method 4.5.2 The Viscid Burgers' Equation -- 4.5.2.1 The FTCS Method -- 4.5.2.2 The DuFort-Frankel Method -- 4.5.2.3 The Lax-Wendroff Method -- 4.5.2.4 The MacCormack Method -- 4.6 The Laplace Equation -- 4.7 Examples -- 4.8 Summary -- Questions -- Chapter 5. Finite Volume Method -- 5.1 Introduction -- 5.2 The Diffusion Equation -- 5.2.1 The Steady-State One-Dimensional Diffusion Equation -- 5.2.2 Discretization of the Source Term -- 5.2.3 Discretized Equation at Boundaries -- 5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) -- 5.2.3.2 Insulated Boundary -- 5.2.3.3 Mixed Boundary Conditions -- 5.2.4 Assembling the Algebraic Equations -- 5.2.5 Extension to Two Dimensions -- 5.2.6 Extension to Three Dimensions -- 5.2.7 Desirable Properties of a Discretization Scheme -- 5.2.8 Further Comments on Interface Diffusion Coefficients -- 5.3 The Convection-Diffusion Equation -- 5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation -- 5.3.1.1 The Central Differencing Scheme -- 5.3.1.2 The Upwind Differencing Scheme -- 5.3.1.3 Exact Solution -- 5.3.1.4 The Exponential Scheme -- 5.3.1.5 The Hybrid Differencing Scheme -- 5.3.1.6 The Second Order Upwind (SOU) Scheme -- 5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme -- 5.3.1.8 The FROMM Scheme -- 5.3.1.9 Advantages and Disadvantages of Various Convective Schemes -- 5.3.2 Deferred Correction Approach -- 5.3.2.1 CDS -- 5.3.2.2 SOU -- 5.3.2.3 QUICK -- 5.3.2.4 FROMM -- 5.3.3 Extension to Two Dimension -- 5.3.3.1 UDS -- 5.3.3.2 CDS -- 5.3.3.3 SOU -- 5.3.3.4 QUICK -- 5.3.3.5 FROMM -- 5.3.4 Extension to Three Dimension -- 5.3.4.1 UDS -- 5.3.4.2 CDS -- 5.3.4.3 SOU -- 5.3.4.4 QUICK -- 5.3.4.5 FROMM -- 5.3.5 High Resolution and Bounded Convective Schemes -- 5.3.5.1 Normalized Variable Formulation -- 5.3.5.2 Convective Boundedness Criteria 5.3.5.3 High-Resolution Schemes -- 5.3.5.4 The TVD Framework -- 5.3.5.5 Implementation of Various Convective Schemes in Code -- 5.4 Time-Dependent Methods -- 5.4.1 One-Step Methods -- 5.4.1.1 Forward Differencing (Euler Method) -- 5.4.1.2 Backward Differencing (Backward Euler) -- 5.4.1.3 Central Differencing (Crank-Nicolson) -- 5.5 Time Discretization Methods Applied to the General Scalar Transport Equation -- 5.5.1 Forward Differencing - Explicit Scheme -- 5.5.2 Backward Differencing - Implicit Scheme -- 5.5.3 Crank-Nicolson - Central Difference Scheme: -- 5.6 Courant Number -- 5.7 Uses of Time-Marching in CFD -- 5.8 Implementation of Boundary Conditions in Code -- 5.8.1 Generalized Boundary Conditions -- 5.8.2 Convective Boundary Conditions -- 5.9 Examples -- 5.10 Summary -- Questions -- Chapter 6. Solution of Incompressible Navier-Stokes Equations -- 6.1 Introduction -- 6.2 Pressure-Velocity Coupling -- 6.3 The Vorticity-Stream Function Method -- 6.3.1 Boundary Conditions -- 6.4 Primitive Variable Methods -- 6.4.1 Co-located Storage of Variables -- 6.4.2 Staggered Grid -- 6.5 Solution Methods for the Primitive Variable Form of N-S Equations -- 6.5.1 The Artificial Compressibility Method -- 6.5.2 The Pressure Correction Approach -- 6.5.2.1 The MAC Method -- 6.5.2.2 The Fractional Step Pressure Projection Method -- 6.6 The SIMPLE Method -- 6.6.1 Derivation of Velocity Correction and Pressure Correction Equations -- 6.6.1.1 Pressure and Velocity Corrections -- 6.6.2 Pressure Correction Equation -- 6.6.3 The SIMPLE Algorithm -- 6.7 Variants of SIMPLE -- 6.7.1 The SIMPLER Algorithm -- 6.7.2 The SIMPLEC Algorithm -- 6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm -- 6.8 Summary -- Questions: -- Chapter 7. Finite Volume Method for Complex Geometries -- 7.1 Introduction -- 7.2 Staggered Grid Algorithm -- 7.3 The Co-located Grid Algorithm 7.4 Discretization Methods for Non-Orthogonal Structured Grids -- 7.4.1 The Continuity Equation -- 7.4.2 The Transport Equation -- 7.4.2.1 Discretization of Convective Flux -- 7.4.2.2 Discretization of Diffusive Flux -- 7.4.2.3 Discretization of Pressure Terms -- 7.4.2.4 Implementation of the QUICK Scheme -- 7.5 Solution of the Pressure Field -- 7.5.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.5.2 Implementation of Momentum Interpolation -- 7.6 Extension to Three Dimension -- 7.6.1 Discretization of Continuity Equations -- 7.6.2 Discretization of Convective Flux -- 7.6.3 Discretization of Diffusive Flux -- 7.6.4 Discretization of the Pressure Term -- 7.6.5 Implementation of the QUICK Scheme -- 7.6.6 Implementation of the SIMPLE Algorithm -- 7.7 Discretization Method for the Cartesian Structured Grid -- 7.7.1 The Continuity Equation -- 7.7.2 The Transport Equation -- 7.7.2.1 Discretization of Convective Flux -- 7.7.2.2 Discretization of Diffusive Flux -- 7.7.2.3 Discretization of the Pressure Term -- 7.7.2.4 Implementation of the QUICK Scheme -- 7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation -- 7.7.2.6 Implementation of the Momentum Interpolation -- 7.8 Discretization Method for the Non-Orthogonal Unstructured Grid -- 7.8.1 The Continuity Equation -- 7.8.2 The Transport Equation -- 7.8.2.1 Discretization of Convective Flux -- 7.8.2.2 Discretization of Diffusive Flux -- 7.8.2.3 Discretization of the Pressure Term -- 7.9 Solution of the Pressure Field -- 7.9.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.9.2 Implementation of the Momentum Interpolation -- 7.9.3 Implementation of Higher-Order Schemes -- 7.10 Summary -- Questions -- Chapter 8. Solution of Algebraic Equations -- 8.1 Introduction -- 8.2 Direct Methods -- 8.2.1 Gauss Elimination -- 8.2.2 LU Decomposition 8.2.3 Tri-Diagonal Matrix Algorithm |
ctrlnum | (OCoLC)1312705346 (DE-599)BVBBV047853366 |
dewey-full | 620.10640150999996 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.10640150999996 |
dewey-search | 620.10640150999996 |
dewey-sort | 3620.10640150999996 |
dewey-tens | 620 - Engineering and allied operations |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10946nam a2200469zc 4500</leader><controlfield tag="001">BV047853366</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220502 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220224s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367524326</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-367-52432-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312705346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047853366</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.10640150999996</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roychowdhury, D. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1256041793</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational fluid dynamics for incompressible flows</subfield><subfield code="c">D. G. Roychowdhury</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 391 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgements -- Chapter 1. Overview of CFD -- 1.1 Introduction -- 1.2 Basic Principles of CFD -- 1.3 What Does a CFD Algorithm Do? -- 1.4 Stages of a CFD Analysis -- 1.4.1 Pre-Processor -- 1.4.2 Solver -- 1.4.3 Post-Processor -- 1.5 Governing Equations -- 1.6 Discretization -- 1.6.1 Finite Difference Method -- 1.6.2 Finite Volume Method -- 1.6.3 Finite Element Method -- 1.7 Discretization Properties -- Questions: -- Chapter 2. Governing Equations and Classification of PDE -- Governing Equations -- 2.1 Introduction -- 2.1.1 Integral Form -- 2.1.2 Differential Form -- 2.2 Conservative Form of the Flow Equations -- 2.2.1 Mass (Continuity) -- 2.2.1.1 Derivation of Continuity Equation -- 2.2.2 Momentum Equations -- 2.2.2.1 Derivation of X-Momentum Equation -- 2.2.3 Energy Equation -- 2.2.3.1 Derivation of Energy Equation -- 2.2.4 General Scalar -- 2.3 Some Comments -- 2.3.1 Conservative and Non-Conservative Forms of Equations -- 2.3.2 Compressible and Incompressible Flow -- Physical and Mathematical Classification of Partial Differential Equations -- 2.4 Equilibrium Problems -- 2.5 Marching Problems -- 2.6 Mathematical Classification -- 2.7 Important Equations -- 2.8 Boundary Conditions (BCs) -- 2.8.1 Inlet Boundary -- 2.8.1.1 Inflow -- 2.8.1.2 Stagnation (Reservoir) -- 2.8.2 Outlet Boundary -- 2.8.2.1 Outflow -- 2.8.2.2 Pressure -- 2.8.2.3 Radiation (Convection) -- 2.8.3 Wall Boundaries -- 2.8.3.1 No-Slip Wall -- 2.8.3.2 Slip Wall -- 2.8.4 Other Boundary Conditions -- 2.8.4.1 Symmetry Plane and Axis Boundary -- 2.8.4.2 Periodic -- 2.9 Summary -- Questions -- Chapter 3. Finite Difference Method: Fundamentals -- 3.1 Introduction -- 3.2 Taylor Series Expansion -- 3.3 Unequal Grid Spacing -- 3.4 Difference Representation of PDE -- 3.4.1 Errors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.1.1 Truncation Error -- 3.4.1.2 Round-off Error -- 3.4.2 Consistency -- 3.4.3 Stability -- 3.4.3.1 Von Neumann's Method -- 3.4.4 Convergence -- 3.4.5 Lax's Equivalence Theorem -- 3.4.6 Courant Number -- 3.5 Examples -- 3.6 Summary -- Questions: -- Chapter 4. Finite Difference Method: Application -- 4.1 Introduction -- 4.2 One-Dimensional Diffusion Equations -- 4.2.1 Explicit Methods -- 4.2.1.1 The Forward Time, Central Space -- 4.2.1.2 The Richardson's Method -- 4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) -- 4.2.2 Implicit Methods -- 4.2.2.1 The Classical Implicit Method -- 4.2.2.2 The Crank-Nicolson Method -- 4.2.2.3 The Method of Weighted Averages -- 4.3 One-Dimensional Transport Equations -- 4.3.1 The Wave Equation -- 4.3.1.1 The FTCS Method -- 4.3.1.2 Upwind Differencing -- 4.3.1.3 The LaxMethod (Lax-Friedrichs Method) -- 4.3.1.4 The Lax-Wendroff Method -- 4.3.1.5 The Two-Step Lax-Wendroff Method -- 4.3.1.6 The MacCormack Method -- 4.3.1.7 The Beam-Warming Method -- 4.3.1.8 The Implicit Method -- 4.3.2 The Complete Transport Equation -- 4.3.2.1 Central Difference -- 4.3.2.2 The Richardson Method -- 4.3.2.3 The DuFort-Frankel Method -- 4.3.2.4 The Upwind Method -- 4.4 Two-Dimensional Diffusion Equation -- 4.4.1 The Explicit Method -- 4.4.2 Implicit Methods -- 4.4.2.1 The Fully Implicit Method -- 4.4.2.2 The Crank-Nicolson Method -- 4.4.2.3 The Alternate Direction Implicit (ADI) Method -- 4.4.2.4 Comments on Diffusion Equations -- 4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables -- 4.4.2.6 The Grid (Mesh) Independence Study -- 4.5 Burgers' Equation -- 4.5.1 The Inviscid Burgers' Equation -- 4.5.1.1 Upwind Differencing -- 4.5.1.2 The Lax (Lax-Friedrichs) Method -- 4.5.1.3 The Lax-Wendroff Method -- 4.5.1.4 The MacCormack Method -- 4.5.1.5 Implicit Methods -- 4.5.1.6 The Godunov Method -- 4.5.1.7 The Roe Method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.2 The Viscid Burgers' Equation -- 4.5.2.1 The FTCS Method -- 4.5.2.2 The DuFort-Frankel Method -- 4.5.2.3 The Lax-Wendroff Method -- 4.5.2.4 The MacCormack Method -- 4.6 The Laplace Equation -- 4.7 Examples -- 4.8 Summary -- Questions -- Chapter 5. Finite Volume Method -- 5.1 Introduction -- 5.2 The Diffusion Equation -- 5.2.1 The Steady-State One-Dimensional Diffusion Equation -- 5.2.2 Discretization of the Source Term -- 5.2.3 Discretized Equation at Boundaries -- 5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) -- 5.2.3.2 Insulated Boundary -- 5.2.3.3 Mixed Boundary Conditions -- 5.2.4 Assembling the Algebraic Equations -- 5.2.5 Extension to Two Dimensions -- 5.2.6 Extension to Three Dimensions -- 5.2.7 Desirable Properties of a Discretization Scheme -- 5.2.8 Further Comments on Interface Diffusion Coefficients -- 5.3 The Convection-Diffusion Equation -- 5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation -- 5.3.1.1 The Central Differencing Scheme -- 5.3.1.2 The Upwind Differencing Scheme -- 5.3.1.3 Exact Solution -- 5.3.1.4 The Exponential Scheme -- 5.3.1.5 The Hybrid Differencing Scheme -- 5.3.1.6 The Second Order Upwind (SOU) Scheme -- 5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme -- 5.3.1.8 The FROMM Scheme -- 5.3.1.9 Advantages and Disadvantages of Various Convective Schemes -- 5.3.2 Deferred Correction Approach -- 5.3.2.1 CDS -- 5.3.2.2 SOU -- 5.3.2.3 QUICK -- 5.3.2.4 FROMM -- 5.3.3 Extension to Two Dimension -- 5.3.3.1 UDS -- 5.3.3.2 CDS -- 5.3.3.3 SOU -- 5.3.3.4 QUICK -- 5.3.3.5 FROMM -- 5.3.4 Extension to Three Dimension -- 5.3.4.1 UDS -- 5.3.4.2 CDS -- 5.3.4.3 SOU -- 5.3.4.4 QUICK -- 5.3.4.5 FROMM -- 5.3.5 High Resolution and Bounded Convective Schemes -- 5.3.5.1 Normalized Variable Formulation -- 5.3.5.2 Convective Boundedness Criteria</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.5.3 High-Resolution Schemes -- 5.3.5.4 The TVD Framework -- 5.3.5.5 Implementation of Various Convective Schemes in Code -- 5.4 Time-Dependent Methods -- 5.4.1 One-Step Methods -- 5.4.1.1 Forward Differencing (Euler Method) -- 5.4.1.2 Backward Differencing (Backward Euler) -- 5.4.1.3 Central Differencing (Crank-Nicolson) -- 5.5 Time Discretization Methods Applied to the General Scalar Transport Equation -- 5.5.1 Forward Differencing - Explicit Scheme -- 5.5.2 Backward Differencing - Implicit Scheme -- 5.5.3 Crank-Nicolson - Central Difference Scheme: -- 5.6 Courant Number -- 5.7 Uses of Time-Marching in CFD -- 5.8 Implementation of Boundary Conditions in Code -- 5.8.1 Generalized Boundary Conditions -- 5.8.2 Convective Boundary Conditions -- 5.9 Examples -- 5.10 Summary -- Questions -- Chapter 6. Solution of Incompressible Navier-Stokes Equations -- 6.1 Introduction -- 6.2 Pressure-Velocity Coupling -- 6.3 The Vorticity-Stream Function Method -- 6.3.1 Boundary Conditions -- 6.4 Primitive Variable Methods -- 6.4.1 Co-located Storage of Variables -- 6.4.2 Staggered Grid -- 6.5 Solution Methods for the Primitive Variable Form of N-S Equations -- 6.5.1 The Artificial Compressibility Method -- 6.5.2 The Pressure Correction Approach -- 6.5.2.1 The MAC Method -- 6.5.2.2 The Fractional Step Pressure Projection Method -- 6.6 The SIMPLE Method -- 6.6.1 Derivation of Velocity Correction and Pressure Correction Equations -- 6.6.1.1 Pressure and Velocity Corrections -- 6.6.2 Pressure Correction Equation -- 6.6.3 The SIMPLE Algorithm -- 6.7 Variants of SIMPLE -- 6.7.1 The SIMPLER Algorithm -- 6.7.2 The SIMPLEC Algorithm -- 6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm -- 6.8 Summary -- Questions: -- Chapter 7. Finite Volume Method for Complex Geometries -- 7.1 Introduction -- 7.2 Staggered Grid Algorithm -- 7.3 The Co-located Grid Algorithm</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4 Discretization Methods for Non-Orthogonal Structured Grids -- 7.4.1 The Continuity Equation -- 7.4.2 The Transport Equation -- 7.4.2.1 Discretization of Convective Flux -- 7.4.2.2 Discretization of Diffusive Flux -- 7.4.2.3 Discretization of Pressure Terms -- 7.4.2.4 Implementation of the QUICK Scheme -- 7.5 Solution of the Pressure Field -- 7.5.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.5.2 Implementation of Momentum Interpolation -- 7.6 Extension to Three Dimension -- 7.6.1 Discretization of Continuity Equations -- 7.6.2 Discretization of Convective Flux -- 7.6.3 Discretization of Diffusive Flux -- 7.6.4 Discretization of the Pressure Term -- 7.6.5 Implementation of the QUICK Scheme -- 7.6.6 Implementation of the SIMPLE Algorithm -- 7.7 Discretization Method for the Cartesian Structured Grid -- 7.7.1 The Continuity Equation -- 7.7.2 The Transport Equation -- 7.7.2.1 Discretization of Convective Flux -- 7.7.2.2 Discretization of Diffusive Flux -- 7.7.2.3 Discretization of the Pressure Term -- 7.7.2.4 Implementation of the QUICK Scheme -- 7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation -- 7.7.2.6 Implementation of the Momentum Interpolation -- 7.8 Discretization Method for the Non-Orthogonal Unstructured Grid -- 7.8.1 The Continuity Equation -- 7.8.2 The Transport Equation -- 7.8.2.1 Discretization of Convective Flux -- 7.8.2.2 Discretization of Diffusive Flux -- 7.8.2.3 Discretization of the Pressure Term -- 7.9 Solution of the Pressure Field -- 7.9.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.9.2 Implementation of the Momentum Interpolation -- 7.9.3 Implementation of Higher-Order Schemes -- 7.10 Summary -- Questions -- Chapter 8. Solution of Algebraic Equations -- 8.1 Introduction -- 8.2 Direct Methods -- 8.2.1 Gauss Elimination -- 8.2.2 LU Decomposition</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.3 Tri-Diagonal Matrix Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics-Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluiddynamik</subfield><subfield code="0">(DE-588)1172567794</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fluiddynamik</subfield><subfield code="0">(DE-588)1172567794</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Äquivalent</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-40806-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-367-80917-1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033236179</subfield></datafield></record></collection> |
id | DE-604.BV047853366 |
illustrated | Illustrated |
index_date | 2024-07-03T19:15:15Z |
indexdate | 2024-07-10T09:23:08Z |
institution | BVB |
isbn | 9780367524326 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033236179 |
oclc_num | 1312705346 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | xxiii, 391 Seiten Illustrationen |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | Roychowdhury, D. G. Verfasser (DE-588)1256041793 aut Computational fluid dynamics for incompressible flows D. G. Roychowdhury First edition Boca Raton ; London ; New York CRC Press 2021 ©2021 xxiii, 391 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgements -- Chapter 1. Overview of CFD -- 1.1 Introduction -- 1.2 Basic Principles of CFD -- 1.3 What Does a CFD Algorithm Do? -- 1.4 Stages of a CFD Analysis -- 1.4.1 Pre-Processor -- 1.4.2 Solver -- 1.4.3 Post-Processor -- 1.5 Governing Equations -- 1.6 Discretization -- 1.6.1 Finite Difference Method -- 1.6.2 Finite Volume Method -- 1.6.3 Finite Element Method -- 1.7 Discretization Properties -- Questions: -- Chapter 2. Governing Equations and Classification of PDE -- Governing Equations -- 2.1 Introduction -- 2.1.1 Integral Form -- 2.1.2 Differential Form -- 2.2 Conservative Form of the Flow Equations -- 2.2.1 Mass (Continuity) -- 2.2.1.1 Derivation of Continuity Equation -- 2.2.2 Momentum Equations -- 2.2.2.1 Derivation of X-Momentum Equation -- 2.2.3 Energy Equation -- 2.2.3.1 Derivation of Energy Equation -- 2.2.4 General Scalar -- 2.3 Some Comments -- 2.3.1 Conservative and Non-Conservative Forms of Equations -- 2.3.2 Compressible and Incompressible Flow -- Physical and Mathematical Classification of Partial Differential Equations -- 2.4 Equilibrium Problems -- 2.5 Marching Problems -- 2.6 Mathematical Classification -- 2.7 Important Equations -- 2.8 Boundary Conditions (BCs) -- 2.8.1 Inlet Boundary -- 2.8.1.1 Inflow -- 2.8.1.2 Stagnation (Reservoir) -- 2.8.2 Outlet Boundary -- 2.8.2.1 Outflow -- 2.8.2.2 Pressure -- 2.8.2.3 Radiation (Convection) -- 2.8.3 Wall Boundaries -- 2.8.3.1 No-Slip Wall -- 2.8.3.2 Slip Wall -- 2.8.4 Other Boundary Conditions -- 2.8.4.1 Symmetry Plane and Axis Boundary -- 2.8.4.2 Periodic -- 2.9 Summary -- Questions -- Chapter 3. Finite Difference Method: Fundamentals -- 3.1 Introduction -- 3.2 Taylor Series Expansion -- 3.3 Unequal Grid Spacing -- 3.4 Difference Representation of PDE -- 3.4.1 Errors 3.4.1.1 Truncation Error -- 3.4.1.2 Round-off Error -- 3.4.2 Consistency -- 3.4.3 Stability -- 3.4.3.1 Von Neumann's Method -- 3.4.4 Convergence -- 3.4.5 Lax's Equivalence Theorem -- 3.4.6 Courant Number -- 3.5 Examples -- 3.6 Summary -- Questions: -- Chapter 4. Finite Difference Method: Application -- 4.1 Introduction -- 4.2 One-Dimensional Diffusion Equations -- 4.2.1 Explicit Methods -- 4.2.1.1 The Forward Time, Central Space -- 4.2.1.2 The Richardson's Method -- 4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) -- 4.2.2 Implicit Methods -- 4.2.2.1 The Classical Implicit Method -- 4.2.2.2 The Crank-Nicolson Method -- 4.2.2.3 The Method of Weighted Averages -- 4.3 One-Dimensional Transport Equations -- 4.3.1 The Wave Equation -- 4.3.1.1 The FTCS Method -- 4.3.1.2 Upwind Differencing -- 4.3.1.3 The LaxMethod (Lax-Friedrichs Method) -- 4.3.1.4 The Lax-Wendroff Method -- 4.3.1.5 The Two-Step Lax-Wendroff Method -- 4.3.1.6 The MacCormack Method -- 4.3.1.7 The Beam-Warming Method -- 4.3.1.8 The Implicit Method -- 4.3.2 The Complete Transport Equation -- 4.3.2.1 Central Difference -- 4.3.2.2 The Richardson Method -- 4.3.2.3 The DuFort-Frankel Method -- 4.3.2.4 The Upwind Method -- 4.4 Two-Dimensional Diffusion Equation -- 4.4.1 The Explicit Method -- 4.4.2 Implicit Methods -- 4.4.2.1 The Fully Implicit Method -- 4.4.2.2 The Crank-Nicolson Method -- 4.4.2.3 The Alternate Direction Implicit (ADI) Method -- 4.4.2.4 Comments on Diffusion Equations -- 4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables -- 4.4.2.6 The Grid (Mesh) Independence Study -- 4.5 Burgers' Equation -- 4.5.1 The Inviscid Burgers' Equation -- 4.5.1.1 Upwind Differencing -- 4.5.1.2 The Lax (Lax-Friedrichs) Method -- 4.5.1.3 The Lax-Wendroff Method -- 4.5.1.4 The MacCormack Method -- 4.5.1.5 Implicit Methods -- 4.5.1.6 The Godunov Method -- 4.5.1.7 The Roe Method 4.5.2 The Viscid Burgers' Equation -- 4.5.2.1 The FTCS Method -- 4.5.2.2 The DuFort-Frankel Method -- 4.5.2.3 The Lax-Wendroff Method -- 4.5.2.4 The MacCormack Method -- 4.6 The Laplace Equation -- 4.7 Examples -- 4.8 Summary -- Questions -- Chapter 5. Finite Volume Method -- 5.1 Introduction -- 5.2 The Diffusion Equation -- 5.2.1 The Steady-State One-Dimensional Diffusion Equation -- 5.2.2 Discretization of the Source Term -- 5.2.3 Discretized Equation at Boundaries -- 5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) -- 5.2.3.2 Insulated Boundary -- 5.2.3.3 Mixed Boundary Conditions -- 5.2.4 Assembling the Algebraic Equations -- 5.2.5 Extension to Two Dimensions -- 5.2.6 Extension to Three Dimensions -- 5.2.7 Desirable Properties of a Discretization Scheme -- 5.2.8 Further Comments on Interface Diffusion Coefficients -- 5.3 The Convection-Diffusion Equation -- 5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation -- 5.3.1.1 The Central Differencing Scheme -- 5.3.1.2 The Upwind Differencing Scheme -- 5.3.1.3 Exact Solution -- 5.3.1.4 The Exponential Scheme -- 5.3.1.5 The Hybrid Differencing Scheme -- 5.3.1.6 The Second Order Upwind (SOU) Scheme -- 5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme -- 5.3.1.8 The FROMM Scheme -- 5.3.1.9 Advantages and Disadvantages of Various Convective Schemes -- 5.3.2 Deferred Correction Approach -- 5.3.2.1 CDS -- 5.3.2.2 SOU -- 5.3.2.3 QUICK -- 5.3.2.4 FROMM -- 5.3.3 Extension to Two Dimension -- 5.3.3.1 UDS -- 5.3.3.2 CDS -- 5.3.3.3 SOU -- 5.3.3.4 QUICK -- 5.3.3.5 FROMM -- 5.3.4 Extension to Three Dimension -- 5.3.4.1 UDS -- 5.3.4.2 CDS -- 5.3.4.3 SOU -- 5.3.4.4 QUICK -- 5.3.4.5 FROMM -- 5.3.5 High Resolution and Bounded Convective Schemes -- 5.3.5.1 Normalized Variable Formulation -- 5.3.5.2 Convective Boundedness Criteria 5.3.5.3 High-Resolution Schemes -- 5.3.5.4 The TVD Framework -- 5.3.5.5 Implementation of Various Convective Schemes in Code -- 5.4 Time-Dependent Methods -- 5.4.1 One-Step Methods -- 5.4.1.1 Forward Differencing (Euler Method) -- 5.4.1.2 Backward Differencing (Backward Euler) -- 5.4.1.3 Central Differencing (Crank-Nicolson) -- 5.5 Time Discretization Methods Applied to the General Scalar Transport Equation -- 5.5.1 Forward Differencing - Explicit Scheme -- 5.5.2 Backward Differencing - Implicit Scheme -- 5.5.3 Crank-Nicolson - Central Difference Scheme: -- 5.6 Courant Number -- 5.7 Uses of Time-Marching in CFD -- 5.8 Implementation of Boundary Conditions in Code -- 5.8.1 Generalized Boundary Conditions -- 5.8.2 Convective Boundary Conditions -- 5.9 Examples -- 5.10 Summary -- Questions -- Chapter 6. Solution of Incompressible Navier-Stokes Equations -- 6.1 Introduction -- 6.2 Pressure-Velocity Coupling -- 6.3 The Vorticity-Stream Function Method -- 6.3.1 Boundary Conditions -- 6.4 Primitive Variable Methods -- 6.4.1 Co-located Storage of Variables -- 6.4.2 Staggered Grid -- 6.5 Solution Methods for the Primitive Variable Form of N-S Equations -- 6.5.1 The Artificial Compressibility Method -- 6.5.2 The Pressure Correction Approach -- 6.5.2.1 The MAC Method -- 6.5.2.2 The Fractional Step Pressure Projection Method -- 6.6 The SIMPLE Method -- 6.6.1 Derivation of Velocity Correction and Pressure Correction Equations -- 6.6.1.1 Pressure and Velocity Corrections -- 6.6.2 Pressure Correction Equation -- 6.6.3 The SIMPLE Algorithm -- 6.7 Variants of SIMPLE -- 6.7.1 The SIMPLER Algorithm -- 6.7.2 The SIMPLEC Algorithm -- 6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm -- 6.8 Summary -- Questions: -- Chapter 7. Finite Volume Method for Complex Geometries -- 7.1 Introduction -- 7.2 Staggered Grid Algorithm -- 7.3 The Co-located Grid Algorithm 7.4 Discretization Methods for Non-Orthogonal Structured Grids -- 7.4.1 The Continuity Equation -- 7.4.2 The Transport Equation -- 7.4.2.1 Discretization of Convective Flux -- 7.4.2.2 Discretization of Diffusive Flux -- 7.4.2.3 Discretization of Pressure Terms -- 7.4.2.4 Implementation of the QUICK Scheme -- 7.5 Solution of the Pressure Field -- 7.5.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.5.2 Implementation of Momentum Interpolation -- 7.6 Extension to Three Dimension -- 7.6.1 Discretization of Continuity Equations -- 7.6.2 Discretization of Convective Flux -- 7.6.3 Discretization of Diffusive Flux -- 7.6.4 Discretization of the Pressure Term -- 7.6.5 Implementation of the QUICK Scheme -- 7.6.6 Implementation of the SIMPLE Algorithm -- 7.7 Discretization Method for the Cartesian Structured Grid -- 7.7.1 The Continuity Equation -- 7.7.2 The Transport Equation -- 7.7.2.1 Discretization of Convective Flux -- 7.7.2.2 Discretization of Diffusive Flux -- 7.7.2.3 Discretization of the Pressure Term -- 7.7.2.4 Implementation of the QUICK Scheme -- 7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation -- 7.7.2.6 Implementation of the Momentum Interpolation -- 7.8 Discretization Method for the Non-Orthogonal Unstructured Grid -- 7.8.1 The Continuity Equation -- 7.8.2 The Transport Equation -- 7.8.2.1 Discretization of Convective Flux -- 7.8.2.2 Discretization of Diffusive Flux -- 7.8.2.3 Discretization of the Pressure Term -- 7.9 Solution of the Pressure Field -- 7.9.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.9.2 Implementation of the Momentum Interpolation -- 7.9.3 Implementation of Higher-Order Schemes -- 7.10 Summary -- Questions -- Chapter 8. Solution of Algebraic Equations -- 8.1 Introduction -- 8.2 Direct Methods -- 8.2.1 Gauss Elimination -- 8.2.2 LU Decomposition 8.2.3 Tri-Diagonal Matrix Algorithm Computational fluid dynamics-Textbooks Inkompressible Strömung (DE-588)4129759-3 gnd rswk-swf Fluiddynamik (DE-588)1172567794 gnd rswk-swf Fluiddynamik (DE-588)1172567794 s Inkompressible Strömung (DE-588)4129759-3 s DE-604 Äquivalent Druck-Ausgabe, Hardcover 978-0-367-40806-0 Erscheint auch als Online-Ausgabe 978-0-367-80917-1 |
spellingShingle | Roychowdhury, D. G. Computational fluid dynamics for incompressible flows Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgements -- Chapter 1. Overview of CFD -- 1.1 Introduction -- 1.2 Basic Principles of CFD -- 1.3 What Does a CFD Algorithm Do? -- 1.4 Stages of a CFD Analysis -- 1.4.1 Pre-Processor -- 1.4.2 Solver -- 1.4.3 Post-Processor -- 1.5 Governing Equations -- 1.6 Discretization -- 1.6.1 Finite Difference Method -- 1.6.2 Finite Volume Method -- 1.6.3 Finite Element Method -- 1.7 Discretization Properties -- Questions: -- Chapter 2. Governing Equations and Classification of PDE -- Governing Equations -- 2.1 Introduction -- 2.1.1 Integral Form -- 2.1.2 Differential Form -- 2.2 Conservative Form of the Flow Equations -- 2.2.1 Mass (Continuity) -- 2.2.1.1 Derivation of Continuity Equation -- 2.2.2 Momentum Equations -- 2.2.2.1 Derivation of X-Momentum Equation -- 2.2.3 Energy Equation -- 2.2.3.1 Derivation of Energy Equation -- 2.2.4 General Scalar -- 2.3 Some Comments -- 2.3.1 Conservative and Non-Conservative Forms of Equations -- 2.3.2 Compressible and Incompressible Flow -- Physical and Mathematical Classification of Partial Differential Equations -- 2.4 Equilibrium Problems -- 2.5 Marching Problems -- 2.6 Mathematical Classification -- 2.7 Important Equations -- 2.8 Boundary Conditions (BCs) -- 2.8.1 Inlet Boundary -- 2.8.1.1 Inflow -- 2.8.1.2 Stagnation (Reservoir) -- 2.8.2 Outlet Boundary -- 2.8.2.1 Outflow -- 2.8.2.2 Pressure -- 2.8.2.3 Radiation (Convection) -- 2.8.3 Wall Boundaries -- 2.8.3.1 No-Slip Wall -- 2.8.3.2 Slip Wall -- 2.8.4 Other Boundary Conditions -- 2.8.4.1 Symmetry Plane and Axis Boundary -- 2.8.4.2 Periodic -- 2.9 Summary -- Questions -- Chapter 3. Finite Difference Method: Fundamentals -- 3.1 Introduction -- 3.2 Taylor Series Expansion -- 3.3 Unequal Grid Spacing -- 3.4 Difference Representation of PDE -- 3.4.1 Errors 3.4.1.1 Truncation Error -- 3.4.1.2 Round-off Error -- 3.4.2 Consistency -- 3.4.3 Stability -- 3.4.3.1 Von Neumann's Method -- 3.4.4 Convergence -- 3.4.5 Lax's Equivalence Theorem -- 3.4.6 Courant Number -- 3.5 Examples -- 3.6 Summary -- Questions: -- Chapter 4. Finite Difference Method: Application -- 4.1 Introduction -- 4.2 One-Dimensional Diffusion Equations -- 4.2.1 Explicit Methods -- 4.2.1.1 The Forward Time, Central Space -- 4.2.1.2 The Richardson's Method -- 4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) -- 4.2.2 Implicit Methods -- 4.2.2.1 The Classical Implicit Method -- 4.2.2.2 The Crank-Nicolson Method -- 4.2.2.3 The Method of Weighted Averages -- 4.3 One-Dimensional Transport Equations -- 4.3.1 The Wave Equation -- 4.3.1.1 The FTCS Method -- 4.3.1.2 Upwind Differencing -- 4.3.1.3 The LaxMethod (Lax-Friedrichs Method) -- 4.3.1.4 The Lax-Wendroff Method -- 4.3.1.5 The Two-Step Lax-Wendroff Method -- 4.3.1.6 The MacCormack Method -- 4.3.1.7 The Beam-Warming Method -- 4.3.1.8 The Implicit Method -- 4.3.2 The Complete Transport Equation -- 4.3.2.1 Central Difference -- 4.3.2.2 The Richardson Method -- 4.3.2.3 The DuFort-Frankel Method -- 4.3.2.4 The Upwind Method -- 4.4 Two-Dimensional Diffusion Equation -- 4.4.1 The Explicit Method -- 4.4.2 Implicit Methods -- 4.4.2.1 The Fully Implicit Method -- 4.4.2.2 The Crank-Nicolson Method -- 4.4.2.3 The Alternate Direction Implicit (ADI) Method -- 4.4.2.4 Comments on Diffusion Equations -- 4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables -- 4.4.2.6 The Grid (Mesh) Independence Study -- 4.5 Burgers' Equation -- 4.5.1 The Inviscid Burgers' Equation -- 4.5.1.1 Upwind Differencing -- 4.5.1.2 The Lax (Lax-Friedrichs) Method -- 4.5.1.3 The Lax-Wendroff Method -- 4.5.1.4 The MacCormack Method -- 4.5.1.5 Implicit Methods -- 4.5.1.6 The Godunov Method -- 4.5.1.7 The Roe Method 4.5.2 The Viscid Burgers' Equation -- 4.5.2.1 The FTCS Method -- 4.5.2.2 The DuFort-Frankel Method -- 4.5.2.3 The Lax-Wendroff Method -- 4.5.2.4 The MacCormack Method -- 4.6 The Laplace Equation -- 4.7 Examples -- 4.8 Summary -- Questions -- Chapter 5. Finite Volume Method -- 5.1 Introduction -- 5.2 The Diffusion Equation -- 5.2.1 The Steady-State One-Dimensional Diffusion Equation -- 5.2.2 Discretization of the Source Term -- 5.2.3 Discretized Equation at Boundaries -- 5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) -- 5.2.3.2 Insulated Boundary -- 5.2.3.3 Mixed Boundary Conditions -- 5.2.4 Assembling the Algebraic Equations -- 5.2.5 Extension to Two Dimensions -- 5.2.6 Extension to Three Dimensions -- 5.2.7 Desirable Properties of a Discretization Scheme -- 5.2.8 Further Comments on Interface Diffusion Coefficients -- 5.3 The Convection-Diffusion Equation -- 5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation -- 5.3.1.1 The Central Differencing Scheme -- 5.3.1.2 The Upwind Differencing Scheme -- 5.3.1.3 Exact Solution -- 5.3.1.4 The Exponential Scheme -- 5.3.1.5 The Hybrid Differencing Scheme -- 5.3.1.6 The Second Order Upwind (SOU) Scheme -- 5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme -- 5.3.1.8 The FROMM Scheme -- 5.3.1.9 Advantages and Disadvantages of Various Convective Schemes -- 5.3.2 Deferred Correction Approach -- 5.3.2.1 CDS -- 5.3.2.2 SOU -- 5.3.2.3 QUICK -- 5.3.2.4 FROMM -- 5.3.3 Extension to Two Dimension -- 5.3.3.1 UDS -- 5.3.3.2 CDS -- 5.3.3.3 SOU -- 5.3.3.4 QUICK -- 5.3.3.5 FROMM -- 5.3.4 Extension to Three Dimension -- 5.3.4.1 UDS -- 5.3.4.2 CDS -- 5.3.4.3 SOU -- 5.3.4.4 QUICK -- 5.3.4.5 FROMM -- 5.3.5 High Resolution and Bounded Convective Schemes -- 5.3.5.1 Normalized Variable Formulation -- 5.3.5.2 Convective Boundedness Criteria 5.3.5.3 High-Resolution Schemes -- 5.3.5.4 The TVD Framework -- 5.3.5.5 Implementation of Various Convective Schemes in Code -- 5.4 Time-Dependent Methods -- 5.4.1 One-Step Methods -- 5.4.1.1 Forward Differencing (Euler Method) -- 5.4.1.2 Backward Differencing (Backward Euler) -- 5.4.1.3 Central Differencing (Crank-Nicolson) -- 5.5 Time Discretization Methods Applied to the General Scalar Transport Equation -- 5.5.1 Forward Differencing - Explicit Scheme -- 5.5.2 Backward Differencing - Implicit Scheme -- 5.5.3 Crank-Nicolson - Central Difference Scheme: -- 5.6 Courant Number -- 5.7 Uses of Time-Marching in CFD -- 5.8 Implementation of Boundary Conditions in Code -- 5.8.1 Generalized Boundary Conditions -- 5.8.2 Convective Boundary Conditions -- 5.9 Examples -- 5.10 Summary -- Questions -- Chapter 6. Solution of Incompressible Navier-Stokes Equations -- 6.1 Introduction -- 6.2 Pressure-Velocity Coupling -- 6.3 The Vorticity-Stream Function Method -- 6.3.1 Boundary Conditions -- 6.4 Primitive Variable Methods -- 6.4.1 Co-located Storage of Variables -- 6.4.2 Staggered Grid -- 6.5 Solution Methods for the Primitive Variable Form of N-S Equations -- 6.5.1 The Artificial Compressibility Method -- 6.5.2 The Pressure Correction Approach -- 6.5.2.1 The MAC Method -- 6.5.2.2 The Fractional Step Pressure Projection Method -- 6.6 The SIMPLE Method -- 6.6.1 Derivation of Velocity Correction and Pressure Correction Equations -- 6.6.1.1 Pressure and Velocity Corrections -- 6.6.2 Pressure Correction Equation -- 6.6.3 The SIMPLE Algorithm -- 6.7 Variants of SIMPLE -- 6.7.1 The SIMPLER Algorithm -- 6.7.2 The SIMPLEC Algorithm -- 6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm -- 6.8 Summary -- Questions: -- Chapter 7. Finite Volume Method for Complex Geometries -- 7.1 Introduction -- 7.2 Staggered Grid Algorithm -- 7.3 The Co-located Grid Algorithm 7.4 Discretization Methods for Non-Orthogonal Structured Grids -- 7.4.1 The Continuity Equation -- 7.4.2 The Transport Equation -- 7.4.2.1 Discretization of Convective Flux -- 7.4.2.2 Discretization of Diffusive Flux -- 7.4.2.3 Discretization of Pressure Terms -- 7.4.2.4 Implementation of the QUICK Scheme -- 7.5 Solution of the Pressure Field -- 7.5.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.5.2 Implementation of Momentum Interpolation -- 7.6 Extension to Three Dimension -- 7.6.1 Discretization of Continuity Equations -- 7.6.2 Discretization of Convective Flux -- 7.6.3 Discretization of Diffusive Flux -- 7.6.4 Discretization of the Pressure Term -- 7.6.5 Implementation of the QUICK Scheme -- 7.6.6 Implementation of the SIMPLE Algorithm -- 7.7 Discretization Method for the Cartesian Structured Grid -- 7.7.1 The Continuity Equation -- 7.7.2 The Transport Equation -- 7.7.2.1 Discretization of Convective Flux -- 7.7.2.2 Discretization of Diffusive Flux -- 7.7.2.3 Discretization of the Pressure Term -- 7.7.2.4 Implementation of the QUICK Scheme -- 7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation -- 7.7.2.6 Implementation of the Momentum Interpolation -- 7.8 Discretization Method for the Non-Orthogonal Unstructured Grid -- 7.8.1 The Continuity Equation -- 7.8.2 The Transport Equation -- 7.8.2.1 Discretization of Convective Flux -- 7.8.2.2 Discretization of Diffusive Flux -- 7.8.2.3 Discretization of the Pressure Term -- 7.9 Solution of the Pressure Field -- 7.9.1 Derivation of Pressure Correction and Velocity Correction Equations -- 7.9.2 Implementation of the Momentum Interpolation -- 7.9.3 Implementation of Higher-Order Schemes -- 7.10 Summary -- Questions -- Chapter 8. Solution of Algebraic Equations -- 8.1 Introduction -- 8.2 Direct Methods -- 8.2.1 Gauss Elimination -- 8.2.2 LU Decomposition 8.2.3 Tri-Diagonal Matrix Algorithm Computational fluid dynamics-Textbooks Inkompressible Strömung (DE-588)4129759-3 gnd Fluiddynamik (DE-588)1172567794 gnd |
subject_GND | (DE-588)4129759-3 (DE-588)1172567794 |
title | Computational fluid dynamics for incompressible flows |
title_auth | Computational fluid dynamics for incompressible flows |
title_exact_search | Computational fluid dynamics for incompressible flows |
title_exact_search_txtP | Computational fluid dynamics for incompressible flows |
title_full | Computational fluid dynamics for incompressible flows D. G. Roychowdhury |
title_fullStr | Computational fluid dynamics for incompressible flows D. G. Roychowdhury |
title_full_unstemmed | Computational fluid dynamics for incompressible flows D. G. Roychowdhury |
title_short | Computational fluid dynamics for incompressible flows |
title_sort | computational fluid dynamics for incompressible flows |
topic | Computational fluid dynamics-Textbooks Inkompressible Strömung (DE-588)4129759-3 gnd Fluiddynamik (DE-588)1172567794 gnd |
topic_facet | Computational fluid dynamics-Textbooks Inkompressible Strömung Fluiddynamik |
work_keys_str_mv | AT roychowdhurydg computationalfluiddynamicsforincompressibleflows |