The mordell conjecture: a complete proof from diophantine geometry
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge tracts in mathematics
226 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole |
Beschreibung: | Title from publisher's bibliographic system (viewed on 13 Jan 2022) |
Beschreibung: | 1 Online-Ressource (vii, 169 Seiten) |
ISBN: | 9781108991445 |
DOI: | 10.1017/9781108991445 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047848723 | ||
003 | DE-604 | ||
005 | 20220310 | ||
007 | cr|uuu---uuuuu | ||
008 | 220222s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108991445 |c Online |9 978-1-108-99144-5 | ||
024 | 7 | |a 10.1017/9781108991445 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108991445 | ||
035 | |a (OCoLC)1302312696 | ||
035 | |a (DE-599)BVBBV047848723 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/52 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Ikoma, Hideaki |d ca. 20./21. Jh. |0 (DE-588)1245441612 |4 aut | |
245 | 1 | 0 | |a The mordell conjecture |b a complete proof from diophantine geometry |c Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (vii, 169 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics | |
490 | 0 | |a 226 | |
500 | |a Title from publisher's bibliographic system (viewed on 13 Jan 2022) | ||
520 | |a The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole | ||
650 | 4 | |a Mordell conjecture | |
650 | 0 | 7 | |a Diophantische Geometrie |0 (DE-588)4150021-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |D s |
689 | 0 | 1 | |a Diophantische Geometrie |0 (DE-588)4150021-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kawaguchi, Shu |d ca. 20./21. Jh. |0 (DE-588)1245442074 |4 aut | |
700 | 1 | |a Moriwaki, Atsushi |d 1960- |0 (DE-588)1068650419 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-84595-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108991445 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033231583 | ||
966 | e | |u https://doi.org/10.1017/9781108991445 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108991445 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183410958139392 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- |
author_GND | (DE-588)1245441612 (DE-588)1245442074 (DE-588)1068650419 |
author_facet | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- |
author_role | aut aut aut |
author_sort | Ikoma, Hideaki ca. 20./21. Jh |
author_variant | h i hi s k sk a m am |
building | Verbundindex |
bvnumber | BV047848723 |
classification_rvk | SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108991445 (OCoLC)1302312696 (DE-599)BVBBV047848723 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108991445 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03014nmm a2200505zc 4500</leader><controlfield tag="001">BV047848723</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220310 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220222s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108991445</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-99144-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108991445</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108991445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302312696</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047848723</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ikoma, Hideaki</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1245441612</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mordell conjecture</subfield><subfield code="b">a complete proof from diophantine geometry</subfield><subfield code="c">Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 169 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">226</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 13 Jan 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mordell conjecture</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Geometrie</subfield><subfield code="0">(DE-588)4150021-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Geometrie</subfield><subfield code="0">(DE-588)4150021-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawaguchi, Shu</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1245442074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moriwaki, Atsushi</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)1068650419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-84595-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108991445</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033231583</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108991445</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108991445</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047848723 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:14:25Z |
indexdate | 2024-07-10T09:23:01Z |
institution | BVB |
isbn | 9781108991445 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033231583 |
oclc_num | 1302312696 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (vii, 169 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics 226 |
spelling | Ikoma, Hideaki ca. 20./21. Jh. (DE-588)1245441612 aut The mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University Cambridge Cambridge University Press 2022 1 Online-Ressource (vii, 169 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 226 Title from publisher's bibliographic system (viewed on 13 Jan 2022) The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole Mordell conjecture Diophantische Geometrie (DE-588)4150021-0 gnd rswk-swf Mordell-Vermutung (DE-588)4123793-6 gnd rswk-swf Mordell-Vermutung (DE-588)4123793-6 s Diophantische Geometrie (DE-588)4150021-0 s DE-604 Kawaguchi, Shu ca. 20./21. Jh. (DE-588)1245442074 aut Moriwaki, Atsushi 1960- (DE-588)1068650419 aut Erscheint auch als Druck-Ausgabe 978-1-108-84595-3 https://doi.org/10.1017/9781108991445 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- The mordell conjecture a complete proof from diophantine geometry Mordell conjecture Diophantische Geometrie (DE-588)4150021-0 gnd Mordell-Vermutung (DE-588)4123793-6 gnd |
subject_GND | (DE-588)4150021-0 (DE-588)4123793-6 |
title | The mordell conjecture a complete proof from diophantine geometry |
title_auth | The mordell conjecture a complete proof from diophantine geometry |
title_exact_search | The mordell conjecture a complete proof from diophantine geometry |
title_exact_search_txtP | The mordell conjecture a complete proof from diophantine geometry |
title_full | The mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University |
title_fullStr | The mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University |
title_full_unstemmed | The mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma, Shitennoji University, Shu Kawaguchi, Doshisha University, Atsushi Moriwaki, Kyoto University |
title_short | The mordell conjecture |
title_sort | the mordell conjecture a complete proof from diophantine geometry |
title_sub | a complete proof from diophantine geometry |
topic | Mordell conjecture Diophantische Geometrie (DE-588)4150021-0 gnd Mordell-Vermutung (DE-588)4123793-6 gnd |
topic_facet | Mordell conjecture Diophantische Geometrie Mordell-Vermutung |
url | https://doi.org/10.1017/9781108991445 |
work_keys_str_mv | AT ikomahideaki themordellconjectureacompleteprooffromdiophantinegeometry AT kawaguchishu themordellconjectureacompleteprooffromdiophantinegeometry AT moriwakiatsushi themordellconjectureacompleteprooffromdiophantinegeometry |