Nonlinear valuation and non-Gaussian risks in finance:
What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with ar...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBW01 Volltext |
Zusammenfassung: | What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities |
Beschreibung: | Title from publisher's bibliographic system (viewed on 24 Jan 2022) Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters |
Beschreibung: | 1 Online-Ressource (xii, 268 Seiten) |
ISBN: | 9781108993876 |
DOI: | 10.1017/9781108993876 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047844306 | ||
003 | DE-604 | ||
005 | 20220310 | ||
007 | cr|uuu---uuuuu | ||
008 | 220218s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108993876 |c Online |9 978-1-108-99387-6 | ||
024 | 7 | |a 10.1017/9781108993876 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108993876 | ||
035 | |a (OCoLC)1298742369 | ||
035 | |a (DE-599)BVBBV047844306 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-20 | ||
082 | 0 | |a 332.01/5118 | |
100 | 1 | |a Madan, Dilip B. |d 1946- |0 (DE-588)134243633 |4 aut | |
245 | 1 | 0 | |a Nonlinear valuation and non-Gaussian risks in finance |c Dilip B. Madan, Wim Schoutens |
264 | 1 | |a Cambridge ; New York, NY |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xii, 268 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 24 Jan 2022) | ||
500 | |a Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters | ||
520 | |a What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities | ||
650 | 4 | |a Financial risk management / Mathematical models | |
650 | 4 | |a Finance / Mathematical models | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Valuation | |
650 | 4 | |a Gaussian processes | |
650 | 4 | |a Multivariate analysis | |
650 | 0 | 7 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzanalyse |0 (DE-588)4133000-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 1 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |D s |
689 | 0 | 2 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 3 | |a Finanzanalyse |0 (DE-588)4133000-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schoutens, Wim |d 1972- |0 (DE-588)117770871X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-31-651809-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108993876 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033227269 | ||
966 | e | |u https://doi.org/10.1017/9781108993876 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108993876 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108993876 |l UBW01 |p ZDB-20-CBO |q UBW_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183403667390464 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Madan, Dilip B. 1946- Schoutens, Wim 1972- |
author_GND | (DE-588)134243633 (DE-588)117770871X |
author_facet | Madan, Dilip B. 1946- Schoutens, Wim 1972- |
author_role | aut aut |
author_sort | Madan, Dilip B. 1946- |
author_variant | d b m db dbm w s ws |
building | Verbundindex |
bvnumber | BV047844306 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108993876 (OCoLC)1298742369 (DE-599)BVBBV047844306 |
dewey-full | 332.01/5118 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.01/5118 |
dewey-search | 332.01/5118 |
dewey-sort | 3332.01 45118 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1017/9781108993876 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04425nmm a2200589zc 4500</leader><controlfield tag="001">BV047844306</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220310 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220218s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108993876</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-99387-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108993876</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108993876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1298742369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047844306</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.01/5118</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Madan, Dilip B.</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)134243633</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear valuation and non-Gaussian risks in finance</subfield><subfield code="c">Dilip B. Madan, Wim Schoutens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 268 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 24 Jan 2022)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial risk management / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Valuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzanalyse</subfield><subfield code="0">(DE-588)4133000-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Finanzanalyse</subfield><subfield code="0">(DE-588)4133000-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schoutens, Wim</subfield><subfield code="d">1972-</subfield><subfield code="0">(DE-588)117770871X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-31-651809-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108993876</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033227269</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108993876</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108993876</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108993876</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBW_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047844306 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:13:12Z |
indexdate | 2024-07-10T09:22:54Z |
institution | BVB |
isbn | 9781108993876 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033227269 |
oclc_num | 1298742369 |
open_access_boolean | |
owner | DE-12 DE-92 DE-20 |
owner_facet | DE-12 DE-92 DE-20 |
physical | 1 Online-Ressource (xii, 268 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBW_PDA_CBO_Kauf_2023 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Madan, Dilip B. 1946- (DE-588)134243633 aut Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan, Wim Schoutens Cambridge ; New York, NY Cambridge University Press 2022 1 Online-Ressource (xii, 268 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 24 Jan 2022) Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities Financial risk management / Mathematical models Finance / Mathematical models Nonlinear theories Valuation Gaussian processes Multivariate analysis Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Finanzanalyse (DE-588)4133000-6 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 s Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 s Stochastischer Prozess (DE-588)4057630-9 s Finanzanalyse (DE-588)4133000-6 s DE-604 Schoutens, Wim 1972- (DE-588)117770871X aut Erscheint auch als Druck-Ausgabe 978-1-31-651809-0 https://doi.org/10.1017/9781108993876 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Madan, Dilip B. 1946- Schoutens, Wim 1972- Nonlinear valuation and non-Gaussian risks in finance Financial risk management / Mathematical models Finance / Mathematical models Nonlinear theories Valuation Gaussian processes Multivariate analysis Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Finanzanalyse (DE-588)4133000-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4276267-4 (DE-588)4057630-9 (DE-588)4133000-6 (DE-588)4114528-8 |
title | Nonlinear valuation and non-Gaussian risks in finance |
title_auth | Nonlinear valuation and non-Gaussian risks in finance |
title_exact_search | Nonlinear valuation and non-Gaussian risks in finance |
title_exact_search_txtP | Nonlinear valuation and non-Gaussian risks in finance |
title_full | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan, Wim Schoutens |
title_fullStr | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan, Wim Schoutens |
title_full_unstemmed | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan, Wim Schoutens |
title_short | Nonlinear valuation and non-Gaussian risks in finance |
title_sort | nonlinear valuation and non gaussian risks in finance |
topic | Financial risk management / Mathematical models Finance / Mathematical models Nonlinear theories Valuation Gaussian processes Multivariate analysis Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Finanzanalyse (DE-588)4133000-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Financial risk management / Mathematical models Finance / Mathematical models Nonlinear theories Valuation Gaussian processes Multivariate analysis Nichtlineare Zeitreihenanalyse Stochastischer Prozess Finanzanalyse Mathematisches Modell |
url | https://doi.org/10.1017/9781108993876 |
work_keys_str_mv | AT madandilipb nonlinearvaluationandnongaussianrisksinfinance AT schoutenswim nonlinearvaluationandnongaussianrisksinfinance |