Natural Language Processing with Transformers:
Since their introduction in 2017, Transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models usi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Inc
2022
|
Ausgabe: | 1st edition |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 https://learning.oreilly.com/library/view/-/9781098103231/?ar |
Zusammenfassung: | Since their introduction in 2017, Transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using HuggingFace Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how Transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize Transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how Transformers can be used for cross-lingual transfer learning Apply Transformers in real-world scenarios where labeled data is scarce Make Transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train Transformers from scratch and learn how to scale to multiple GPUs and distributed environments |
Beschreibung: | Online resource; Title from title page (viewed March 25, 2022) |
Beschreibung: | 1 online resource (409 pages) Illustrationen, Diagramme |
Format: | Mode of access: World Wide Web |
ISBN: | 9781098103217 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV047840675 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220216s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781098103217 |c online |9 9781098103217 | ||
035 | |a (OCoLC)1298745332 | ||
035 | |a (DE-599)KEP063081067 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
084 | |a ST 306 |0 (DE-625)143654: |2 rvk | ||
084 | |a ZN 6070 |0 (DE-625)157501: |2 rvk | ||
100 | 1 | |a Tunstall, Lewis |e Verfasser |4 aut | |
245 | 1 | 0 | |a Natural Language Processing with Transformers |c Tunstall, Lewis |
250 | |a 1st edition | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc |c 2022 | |
300 | |a 1 online resource (409 pages) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title page (viewed March 25, 2022) | ||
520 | 3 | |a Since their introduction in 2017, Transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using HuggingFace Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how Transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize Transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how Transformers can be used for cross-lingual transfer learning Apply Transformers in real-world scenarios where labeled data is scarce Make Transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train Transformers from scratch and learn how to scale to multiple GPUs and distributed environments | |
538 | |a Mode of access: World Wide Web | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natürliche Sprache |0 (DE-588)4041354-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Textverarbeitung |0 (DE-588)4059667-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
653 | 0 | |a Electronic books ; local | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Natürliche Sprache |0 (DE-588)4041354-8 |D s |
689 | 0 | 1 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |D s |
689 | 0 | 2 | |a Textverarbeitung |0 (DE-588)4059667-9 |D s |
689 | 0 | 3 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 4 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a von Werra, Leandro |e Verfasser |4 aut | |
700 | 1 | |a Wolf, Thomas |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-0981-0324-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-0981-0324-8 |
856 | 4 | 0 | |m X:ORHE |u https://learning.oreilly.com/library/view/-/9781098103231/?ar |x Aggregator |
912 | |a ZDB-30-PQE |a ZDB-30-ORH | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033223761 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/othaw/detail.action?docID=6871489 |l FAW01 |p ZDB-30-PQE |q Einzelkauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/othaw/detail.action?docID=6871489 |l FAW02 |p ZDB-30-PQE |q Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183397574115328 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Tunstall, Lewis von Werra, Leandro Wolf, Thomas |
author_facet | Tunstall, Lewis von Werra, Leandro Wolf, Thomas |
author_role | aut aut aut |
author_sort | Tunstall, Lewis |
author_variant | l t lt w l v wl wlv t w tw |
building | Verbundindex |
bvnumber | BV047840675 |
classification_rvk | ST 306 ZN 6070 |
collection | ZDB-30-PQE ZDB-30-ORH |
ctrlnum | (OCoLC)1298745332 (DE-599)KEP063081067 |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03673nmm a22005771c 4500</leader><controlfield tag="001">BV047840675</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220216s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098103217</subfield><subfield code="c">online</subfield><subfield code="9">9781098103217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1298745332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063081067</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 306</subfield><subfield code="0">(DE-625)143654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6070</subfield><subfield code="0">(DE-625)157501:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tunstall, Lewis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural Language Processing with Transformers</subfield><subfield code="c">Tunstall, Lewis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (409 pages)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title page (viewed March 25, 2022)</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Since their introduction in 2017, Transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using HuggingFace Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how Transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize Transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how Transformers can be used for cross-lingual transfer learning Apply Transformers in real-world scenarios where labeled data is scarce Make Transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train Transformers from scratch and learn how to scale to multiple GPUs and distributed environments</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Textverarbeitung</subfield><subfield code="0">(DE-588)4059667-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books ; local</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Textverarbeitung</subfield><subfield code="0">(DE-588)4059667-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Werra, Leandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-0981-0324-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-0981-0324-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:ORHE</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098103231/?ar</subfield><subfield code="x">Aggregator</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033223761</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/othaw/detail.action?docID=6871489</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/othaw/detail.action?docID=6871489</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047840675 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:11:52Z |
indexdate | 2024-07-10T09:22:48Z |
institution | BVB |
isbn | 9781098103217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033223761 |
oclc_num | 1298745332 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (409 pages) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-ORH ZDB-30-PQE Einzelkauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc |
record_format | marc |
spelling | Tunstall, Lewis Verfasser aut Natural Language Processing with Transformers Tunstall, Lewis 1st edition Sebastopol, CA O'Reilly Media, Inc 2022 1 online resource (409 pages) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Online resource; Title from title page (viewed March 25, 2022) Since their introduction in 2017, Transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using HuggingFace Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how Transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize Transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how Transformers can be used for cross-lingual transfer learning Apply Transformers in real-world scenarios where labeled data is scarce Make Transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train Transformers from scratch and learn how to scale to multiple GPUs and distributed environments Mode of access: World Wide Web Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Natürliche Sprache (DE-588)4041354-8 gnd rswk-swf Textverarbeitung (DE-588)4059667-9 gnd rswk-swf Sprachverarbeitung (DE-588)4116579-2 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Electronic books ; local Electronic books Natürliche Sprache (DE-588)4041354-8 s Sprachverarbeitung (DE-588)4116579-2 s Textverarbeitung (DE-588)4059667-9 s Maschinelles Lernen (DE-588)4193754-5 s Deep learning (DE-588)1135597375 s DE-604 von Werra, Leandro Verfasser aut Wolf, Thomas Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-0981-0324-8 X:ORHE https://learning.oreilly.com/library/view/-/9781098103231/?ar Aggregator |
spellingShingle | Tunstall, Lewis von Werra, Leandro Wolf, Thomas Natural Language Processing with Transformers Maschinelles Lernen (DE-588)4193754-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd Textverarbeitung (DE-588)4059667-9 gnd Sprachverarbeitung (DE-588)4116579-2 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4041354-8 (DE-588)4059667-9 (DE-588)4116579-2 (DE-588)1135597375 |
title | Natural Language Processing with Transformers |
title_auth | Natural Language Processing with Transformers |
title_exact_search | Natural Language Processing with Transformers |
title_exact_search_txtP | Natural Language Processing with Transformers |
title_full | Natural Language Processing with Transformers Tunstall, Lewis |
title_fullStr | Natural Language Processing with Transformers Tunstall, Lewis |
title_full_unstemmed | Natural Language Processing with Transformers Tunstall, Lewis |
title_short | Natural Language Processing with Transformers |
title_sort | natural language processing with transformers |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd Textverarbeitung (DE-588)4059667-9 gnd Sprachverarbeitung (DE-588)4116579-2 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Maschinelles Lernen Natürliche Sprache Textverarbeitung Sprachverarbeitung Deep learning |
url | https://learning.oreilly.com/library/view/-/9781098103231/?ar |
work_keys_str_mv | AT tunstalllewis naturallanguageprocessingwithtransformers AT vonwerraleandro naturallanguageprocessingwithtransformers AT wolfthomas naturallanguageprocessingwithtransformers |